2022版高考数学大一轮复习作业本55《随机抽样》(含答案详解)
展开一、选择题
从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )
A.480 B.481 C.482 D.483
为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( )
A.9 B.8 C.10 D.7
某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )
A.1,2,3,4,5,6 B.6,16,26,36,46,56
C.1,2,4,8,16,32 D.3,9,13,27,36,54
某学校礼堂有30排座位,每排有20个.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生.这里运用的抽样方法是( )
A.抽签法 B.随机数法 C.系统抽样 D.分层抽样
某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( )
A.16 B.17 C.18 D.19
去年“3·15”,某报社做了一次关于“虚假广告”的调查,在A,B,C,D四个单位回收的问卷数依次成公差为正数的等差数列,共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B单位抽取30份问卷,则在D单位抽取的问卷份数是( )
A.45 B.50 C.60 D.65
某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )
A.100 B.150 C.200 D.250
以下抽样方法是简单随机抽样的是( )
A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖
B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格
C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见
D.用抽签方法从10件产品中选取3件进行质量检验
将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8 B.25,17,8 C.25,16,9 D.24,17,9
某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=( )
A.660 B.720 C.780 D.800
某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )
A.40 B.36 C.30 D.20
高三某班有学生56人,现将所有同学随机编号并用系统抽样的方法,抽取一个容量为4的样本,已知5号,33号,47号学生在样本中,则样本中还有一个学生的编号为( )
A.13 B.17 C.19 D.21
二、填空题
已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋进行检查,将3 000袋奶粉按1,2,…,3 000 随机编号.若第一组抽出的号码是11,则第六十一组抽出的号码为________.
为检验某校高一年级学生的身高情况,现采用先分层抽样后简单随机抽样的方法,抽取一个容量为210的样本,已知每个学生被抽到的概率为0.3,且男女生的比是4∶3,则该校高一年级女生的人数是 .
一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是 .
某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为 .
\s 0 参考答案
答案为:C
解析:根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500.所以n≤20.72,故最大编号为7+25×(20-1)=482.
答案为:A
解析:由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.
答案为:B
解析:由系统抽样知识可知,所取学生编号之间的间距相等且为10,所以应选B.
答案为:C
解析:由留下的学生座位号均相差一排可知是系统抽样.
答案为:C;
解析:因为从1 000名学生中抽取一个容量为40的样本,
所以系统抽样的分段间隔为eq \f(1 000,40)=25,
设第一组随机抽取的号码为x,则抽取的第18组编号为x+17×25=443,所以x=18.
答案为:C;
解析:由于B单位抽取的问卷是样本容量的eq \f(1,5),所以B单位回收问卷200份.
由等差数列知识可得C单位回收问卷300份,D单位回收问卷400份,则D单位抽取的问卷份数是B单位的2倍,即为60份.
答案为:A;
解析:法一:由题意可得eq \f(70,n-70)=eq \f(3 500,1 500),解得n=100.
法二:由题意,抽样比为eq \f(70,3 500)=eq \f(1,50),总体容量为3 500+1 500=5 000,
故n=5 000×eq \f(1,50)=100.
答案为:D;
解析:选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.
答案为:B
解析:由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,
每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).
令3+12(k-1)≤300,得k≤eq \f(103,4),因此第Ⅰ营区被抽中的人数是25;
令300<3+12(k-1)≤495,得eq \f(103,4)
答案为:B
解析:由已知可得,抽样比为eq \f(13,780)=eq \f(1,60),从而eq \f(35,600+780+n)=eq \f(1,60),解得n=720.
答案为:C
解析:利用分层抽样的比例关系,设从乙社区抽取n户,则eq \f(270,360+270+180)=eq \f(n,90),解得n=30.
C.
答案为:1 211.
解析:由题意知,抽样比为k=eq \f(3 000,150)=20,又第一组抽出的号码是11,
则11+60×20=1 211,故第六十一组抽出的号码为1 211.
答案为:300;
解析:抽取的高一年级女生的人数为210×eq \f(3,7)=90,
则该校高一年级女生的人数为90÷0.3=300,故答案为300.
答案为:76;
解析:由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,
十位数字为8-1=7,故抽取的号码为76.
答案为:3;
解析:系统抽样的抽取间隔为eq \f(30,5)=6.设抽到的最小编号为x,
则x+(6+x)+(12+x)+(18+x)+(24+x)=75,所以x=3.
2022版高考数学大一轮复习作业本68《复数》(含答案详解): 这是一份2022版高考数学大一轮复习作业本68《复数》(含答案详解),共4页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2022版高考数学大一轮复习作业本47《椭圆》(含答案详解): 这是一份2022版高考数学大一轮复习作业本47《椭圆》(含答案详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2022版高考数学大一轮复习作业本45《圆的方程》(含答案详解): 这是一份2022版高考数学大一轮复习作业本45《圆的方程》(含答案详解),共4页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。