初中数学人教版八年级上册13.3.1 等腰三角形教学设计
展开《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”.学生通过定理的证明培养自己的观察能力,渗透转化思想,发展逻辑思维能力和创造思维能力,能够运用所学知识分析,解决简单的实际问题;初步了解数学来源于实践,又反作用于实践即服务于实践的辩证唯物主义观点.
【教材分析】
本节课重点是等腰三角形的判定定理,(该定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法),在研究了等腰三角形的“等边对等角”和“三线合一”的性质之后,继续渗透用运动的观点分析几何图形的思想;在教学上仍保持较强的直观性,在逻辑性方面的训练适当加强.
【学情分析】
在研究了等腰三角形的“等边对等角”和“三线合一”的性质之后,继续渗透用运动的观点分析几何图形的思想;在教学上仍保持较强的直观性,在逻辑性方面的训练适当加强.按《课程标准》,学生在这一阶段的学习中,应该对简单的说理题能运用“∵……,∴……”的形式写出说理过程;本节内容的难点是性质定理与判定定理的区别(等腰三角形的性质定理与判定定理是互逆定理,学生们在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节课的难点);另外由于知识点的增加,题目复杂程度的提高,一定要让学生真正理解定理,让学生逐步掌握解题的思想方法,才能在解题时结合条件选择定理加以应用.
【教学目标】
1. 探索并证明等腰三角形的判定定理.
2. 通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.
【教学重点】
等腰三角形的判定定理的证明.
【教学难点】
等腰三角形的判定定理及其应用.
【教学方法】
五步教学法 演示法、直观教学法 讲练结合法.
【课前准备】
三角板 学案 多媒体课件
【课时设置】
一课时
【教学过程】
提出问题,创设情境
[师]上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?
[生甲]等腰三角形的两底角相等.
[生乙]等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.
[师]同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题.
一、预学自检 互助点拨
[师]同学们看下面的问题并讨论:
思考:如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?
在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?
[生甲]应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.
[生乙]我认为能同时赶到O点的位置很重要,也就是∠A如果不等于∠B,那么同时以同样的速度就不一定能同时赶到出事地点.
[师]现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?
[生丙]我想它们所对的边应该相等.
[师]为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明.
[生丁]我是运用三角形全等来证明的.
(投影仪演示了同学证明过程)
二、合作互学 探究新知
[例1]已知:在△ABC中,∠B=∠C(如图).
求证:AB=AC.
证明:作∠BAC的平分线AD.
在△BAD和△CAD中,
∴△BAD≌△CAD(AAS).
∴AB=AC.
[师]太好了.从丁同学的证明结论来看,在一个三角形中,如果有两个角相等,那么它们所对的边也是相等,也就说这个三角形就是等腰三角形.这个结论也回答了我们一开始提出的问题.也就是如何来判定一个三角形是等腰三角形.
(演示课件)
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
[师]下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.
(演示课件)
[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
[师]这个题是文字叙述的证明题,我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).
求证:AB=AC.
[师]同学们先思考,再分析.
[生]要证明AB=AC,可先证明∠B=∠C.
[师]这位同学首先想到我们这节课的重点内容,很好!
[生]接下来,可以找∠B、∠C与∠1、∠2的关系.
[师]我们共同证明,注意每一步证明的理论根据.
(演示课件,括号内部分由学生来填)
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等),
∠2=∠C(两直线平行,内错角相等).
又∵∠1=∠2,
∴∠B=∠C,
∴AB=AC(等角对等边).
[师]看大屏幕,同学们试着完成这个题.
(课件演示)
[师]下面来看另一个例题.
(演示课件)
[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?
[师]这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.
解:选取比例尺为1:100(即为1 cm代表1 m).
(1)作线段DE=4 cm;
(2)作线段DE的垂直平分线MN,与DE交于点B;
(3)在MN上截取BC=2.5 cm;
(4)连接CD、CE,△CDE就是所求的等腰三角形,量出CD的长,就可以算出要求的绳长.
[师]同学们按以上步骤来做一做,看结果是多少.
三、自我检测 成果展示
1.已知:如图,AD∥BC,BD平分∠ABC.
求证:AB=AD.
(投影仪演示学生证明过程)
证明:∵AD∥BC,
∴∠ADB=∠DBC(两直线平行,内错角相等).
又∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD(等角对等边).
2.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,并说明图中有哪些等腰三角形.
答案:∠1=72°,∠2=36°.
等腰三角形有:△ABC、△ABD、△BCD.
四、应用提升 挑战自我
2. 如图,AC和BD相交于点O,且AB∥DC,OA=OB,求证:OC=OD.
答案:
证明:∵OA=OB,
∴∠A=∠B.
又∵AB∥DC,
∴∠A=∠C,∠B=∠D.
∴∠C=∠D.
∴OC=OD(等角对等边).
五、经验总结 反思收获
本节课你学到了什么?写出来
本节课我们主要探究了等腰三角形判定定理,并对判定定理的简单应用作了一定的了解.在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力.
【板书设计】
一、等腰三角形的判定定理──等角对等边
二、等腰三角形判定定理的应用
三、随堂作业
四、课时小结
【备课反思】
在本节课的教学上,我联系学生的实际情况,从学生出发,设计引课方式,通过设疑激发学生的求知欲望,创设教学情境,提高学生的学习兴趣,既体现数学的实用性,又自然地引入本节课题.在整节课的教学过程中,把等腰三角形判定定理做为知识主线,训练学生思维,以设疑——感知——概括——证明——运用为教学程序,充分遵循学生认识事物的规律,使学生能顺利地掌握重点,突破难点,提高能力.注重引导学生体会知识的发生发展过程,鼓励学生充分地动脑、动口、动手,积极地参与到教学中来.在充分尊重教材的前提之下,融教材练习、习题于教学过程中,为学生顺利掌握等腰三角形的判定定理创造了有利条件;在训练学生思维上下功夫,不仅使学生了解这道题怎么做,还要使学生知道这一类题通常怎么做,更要使学生明白为什么要这样做,从而使学生由“学会”发展为“会学”
人教版八年级上册13.3.1 等腰三角形教案设计: 这是一份人教版八年级上册13.3.1 等腰三角形教案设计,共4页。教案主要包含了教学目标,教学重点,教学过程,教学反思等内容,欢迎下载使用。
人教版八年级上册13.3.1 等腰三角形教学设计及反思: 这是一份人教版八年级上册13.3.1 等腰三角形教学设计及反思,共4页。教案主要包含了教学目标,教学重点,教学过程,教学反思等内容,欢迎下载使用。
初中数学人教版八年级上册第十三章 轴对称13.3 等腰三角形13.3.1 等腰三角形第2课时教案: 这是一份初中数学人教版八年级上册第十三章 轴对称13.3 等腰三角形13.3.1 等腰三角形第2课时教案,共14页。教案主要包含了教学目标,灵活变换的能力.,课型,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。