人教版九年级上册24.2.2 直线和圆的位置关系第3课时学案设计
展开第3课时 切线长定理
学习目标:
1. 理解切线长的定义;
2. 掌握切线长定理,并能灵活运用切线长定理解题。
学习重点:切线长定理的理解
学习难点:切线长定理的应用
学习过程:
一、知识准备:
1. 直线与圆的位置关系有哪些?怎样判定?
2. 切线的判定和性质是什么?
3. 角的平分线的判定和性质是是什么?
二、引入新课:
过圆上一点可以作圆的几条切线?那么过圆外一点可以作圆的几条切线呢?
三、课内探究:
(一)探究切线长的定义:
如下图,过⊙O外一点P,画出⊙O的所有切线。
P
引出定义:过圆外一点,可以作圆的______条切线,这点与其中一个切点之间的线段的长,叫做这点到圆的切线长。
(二) 探究切线与切线长的区别和联系:
| 区别 | 联系 |
切线 |
|
|
切线长 |
|
跟踪训练:判断
1. 圆的切线长就圆的切线的长度。( )
2. 过任意一点总可以作圆的两条切线。( )
(三)探究切线长定理:
如图,已知PA、PB是⊙O的两条切线,试指出图中相等的量,并证明。
切线长定理:过圆外一点所画的圆的_____条切线长相等。
该定理用数学符号语言叙述为:
∵
∴
跟踪训练:
1. 如图,⊙O与△ABC的边BC相切,切点为点D,
与AB、AC的延长线相切,切点分别为店E、F,则
图中相等的线段有__________________________
_____________________________。
2. 从圆外一点向半径为9的圆作切线,已知切线长为18,则从这点到圆的最短距离为________。
3. 如图,PA、PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠ACB=70°。则∠P=________。
四、典例解析:
例:如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B两点,PA=PB=4cm,∠P=40°,C是劣弧AB上任意一点,过点C作⊙O的切线,分别交PA、PB与点D、E,试求:
(1)△PDE的周长;
(2)∠DOE的度数。
巩固训练:1.如图,PC是⊙O的切线,C是切点,PO交⊙O于点 A,过点A的切线交 PC于点D,CD∶DP = 1∶2,AD=2cm,
求⊙O的半径。
2. 如图,P为⊙O外一点,PA、PB是⊙O的两条切线,A、B是切点,BC是直径。
(1)求证:AC∥OP
︵
(2)如果∠APC=70°,求 AC的度数
五、当堂检测:
1. 如图, P是⊙O外一点,PA、PB 分别与⊙O相切于点A、B,C是AB上任一点,过C作⊙O的切线分别交 PA、PB 于点 D、E。若△PDE的周长为12,求PA的长。
2. 如图,PA、PB是⊙O的切线,A、B为切点,
∠OAB=30°。
(1)求∠APB的度数;
(2)当OA=3时,求AP的长。
六、课堂小结:畅所欲言,查漏补缺
七、课后提升:
1.如图所示,PA、PB是⊙O的两条切线,A、B为切点,求证:∠ABO=∠APB。
2.如图,EB、EC是⊙O的两条切线,B、C是切点,
A、D是⊙O上两点,如果∠E=46°,
∠DCF=32°,求∠A的度数。
3. 如图,以 Rt△ ABC的直角边 AC为直径作⊙O,交斜边AB于点D, DE切⊙O于点 D,交 BC于点 E。若BC=10,求DE的长。
4. 如图,直线、分别切圆O于A、B,且∥,切圆O于E,交、于点C、D,求证:∠COD=90°
变式:若OC=6,OD=8,则CD= 。
人教版九年级上册24.2.2 直线和圆的位置关系优质第3课时导学案及答案: 这是一份人教版九年级上册24.2.2 直线和圆的位置关系优质第3课时导学案及答案,共4页。学案主要包含了学习目标,重点难点,课堂探究等内容,欢迎下载使用。
人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系导学案: 这是一份人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系导学案,共21页。学案主要包含了题型特点分析,例题讲解,解题方法点拨,强化练习,参考答案等内容,欢迎下载使用。
初中数学人教版九年级上册24.2.2 直线和圆的位置关系第3课时导学案: 这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系第3课时导学案,共8页。学案主要包含了知识链接,要点探究,课堂小结等内容,欢迎下载使用。