|教案下载
搜索
    上传资料 赚现金
    人教版数学九年级上22.1.3 第1课时 二次函数y=ax2+k的图象和性质2 教案
    立即下载
    加入资料篮
    人教版数学九年级上22.1.3  第1课时  二次函数y=ax2+k的图象和性质2 教案01
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时教案设计

    展开
    这是一份初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时教案设计,共3页。教案主要包含了提出问题,分析问题,解决问题,做一做,练习,小结,作业等内容,欢迎下载使用。

    教学目标:
    1、使学生能利用描点法正确作出函数y=ax2+b的图象。
    2、让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
    重点难点:
    会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系是教学重点。
    正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系是教学的难点。
    教学过程:
    一、提出问题
    1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
    2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
    二、分析问题,解决问题
    问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?
    (画出函数y=2x2和函数y=2x2的图象,并加以比较)
    问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
    教学要点
    1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。
    2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.
    3.教师写出解题过程,同学生所画图象进行比较。
    解:(1)列表:
    (2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。
    (3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。
    (图象略)
    问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
    教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值
    之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。
    教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。
    问题4:函数y=2x2+1和y=2x2的图象有什么联系?
    由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。
    问题5:现在你能回答前面提出的第2个问题了吗?
    让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
    问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
    完成填空:
    当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.
    以上就是函数y=2x2+1的性质。
    三、做一做
    问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
    教学要点
    1.在学生画函数图象的同时,教师巡视指导;
    2.让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。
    问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?
    教学要点
    1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);
    2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数
    值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得
    最小值,最小值y=-2。
    问题9:在同一直角坐标系中。函数y=- eq \f(1,3)x2+2图象与函数y=- eq \f(1,3)x2的图象有什么关系?
    要求学生能够画出函数y=- eq \f(1,3)x2与函数y=- eq \f(1,3)x2+2的草图,由草图观察得出结论:函数y=- eq \f(1,3)1/3x2+2的图象与函数y=- eq \f(1,3)x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=- eq \f(1,3)x2+2的图象可以看成将函数y=- eq \f(1,3)x2的图象向上平移两个单位得到的。
    问题10:你能说出函数y=- eq \f(1,3)x2+2的图象的开口方向、对称轴和顶点坐标吗?
    [函数y=- eq \f(1,3)x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]
    问题11:这个函数图象有哪些性质?
    让学生观察函数y=- eq \f(1,3)x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。
    四、练习: P9 练习1、2、3。
    五、小结
    1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?
    2.你能说出函数y=ax2+k具有哪些性质?
    六、作业:1.P19习题26.2 1.(1)
    2.选用课时作业优化设计.
    第一课时作业优化设计
    1.分别在同一直角坐标系中,画出下列各组两个二次函数的图象。
    (1)y=-2x2与y=-2x2-2;
    (2)y=3x2+1与y=3x2-1。
    2.在同一直角坐标系内画出下列二次函数的图象,
    y= eq \f(1,2)x2,y= eq \f(1,2)x2+2,y= eq \f(1,2)x2-2
    观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置。
    你能说出抛物线y= eq \f(1,2)x2+k的开口方向及对称轴、顶点的位置吗?
    3.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y= eq \f(1,2)x2得到抛
    物线y= eq \f(1,2)x2+2和y= eq \f(1,2)x2-2?
    4.试说出函数y= eq \f(1,2)x2,y= eq \f(1,2)x2+2,y= eq \f(1,2)x2-2的图象所具有的共同性质。
    x

    -3
    -2
    -1
    0
    1
    2
    3

    y=x2

    18
    8
    2
    0
    2
    8
    18

    y=x2+1

    19
    9
    3
    l
    3
    9
    19

    相关教案

    初中数学人教版九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时教案: 这是一份初中数学人教版九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时教案,共4页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。

    初中第二十二章 二次函数22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时教案: 这是一份初中第二十二章 二次函数22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时教案,共2页。

    人教版九年级上册22.1.1 二次函数第1课时教案设计: 这是一份人教版九年级上册22.1.1 二次函数第1课时教案设计,共2页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版数学九年级上22.1.3 第1课时 二次函数y=ax2+k的图象和性质2 教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map