高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.3 简单几何体的表面积与体积示范课课件ppt
展开之前已经学过了正方体和长方体的表面积和体积那么第一节学习的简单空间几何体的表面积和体积又怎么求呢?
1 棱柱、棱锥、棱台的表面积多面体的表面积就是围成各个面的面积的和,棱柱棱锥棱台的表面积就是围成他们的各个面的面积和
S棱柱表=S棱柱侧+2S底S棱锥表=S棱锥侧+S底S棱台表=S棱台侧+S上底+S下底
例一:如图,四面体P-ABC的各棱长均为a,求他的表面积。
练习一:现有一个底面是菱形的直四棱柱(侧棱与底面垂直),它的体对角线长为9和15,高是5,求该直四棱柱的侧面积.
解:如图,设底面对角线AC=a,BD=b,交点 为O,对角线A1C=15,B1D=9,
∴a2+52=152,b2+52=92,∴a2=200,b2=56.∵该直四棱柱的底面是菱形,∴AB2=2(AC)2+2(BD)2=4(a2+b2)=4(200+56)=64,∴AB=8.∴该直四棱柱的侧面积S=4×8×5=160.
说明:棱柱的高指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这点与垂足(垂线与底面的交点)之间的距离。棱锥的高是指从顶点向底面作垂线,顶点与垂足之间的距离。棱台的高是指两底面之间的距离,即从上底面上任意一点向下底面作垂线,这点与垂足之间的距离。
练习二:如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是?
练习三:如图所示,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.
解:设AB=a,AD=b,DD′=c,则长方体ABCD-A′B′C′D′的体积V=abc,又S△A′DD′= bc,且三棱锥C-A′DD′的高为CD=a.所以V三棱锥C-A′DD′= S△A′D′D·CD= abc.则剩余部分的体积V剩=abc- abc= abc.故V棱锥C-A′DD′∶V剩= abc∶ abc=1∶5.
一、三棱锥P-ABC中,PA⊥底面ABC,PA=3.底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于_______
三、某几何体的三视图如图所示,则该几何体的表面积为( )A.54 B.60 C.66 D.72
高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.3 简单几何体的表面积与体积说课ppt课件: 这是一份高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.3 简单几何体的表面积与体积说课ppt课件,共21页。PPT课件主要包含了学习目标,几何体表面积,转化思想,棱柱的体积公式,V棱柱Sh,祖暅原理,VSh,棱锥的体积公式,棱台的体积公式,所以这个漏斗的容积等内容,欢迎下载使用。
人教A版 (2019)必修 第二册8.3 简单几何体的表面积与体积精品课件ppt: 这是一份人教A版 (2019)必修 第二册8.3 简单几何体的表面积与体积精品课件ppt,共26页。PPT课件主要包含了学习目标,新知学习,易错辨析,典例剖析,随堂小测,课堂小结等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.3 简单几何体的表面积与体积教学演示ppt课件: 这是一份高中数学人教A版 (2019)必修 第二册第八章 立体几何初步8.3 简单几何体的表面积与体积教学演示ppt课件,共37页。