2021年中考数学三轮冲刺《解直角三角形》解答题冲刺练习(含答案)
展开如图,矩形ABCD的对角线AC.BD相交于点O, 过点O作OE⊥AC交AD于E,若AB=6,AD=8,求sin∠OEA的值 .
小玲家在某24层楼的顶楼,对面新造了一幢28米高的图书馆,小玲在楼顶A处看图书馆楼顶B处和楼底C处的俯角分别是45°,60°.请问:
(1)两楼的间距是多少米?(精确到1m)
(2)小玲家的这幢住宅楼的平均层高是多少米?(精确到0.1m)
(参考了数据:≈1.73,≈1.41)
如图1,某同学家的一面窗户上安装有遮阳篷,图2和图3是截面示意图,CD是遮阳篷,窗户AB为1.5米,BC为0.5米.该遮阳篷有伸缩功能.如图2,该同学在夏季某日的正午时刻测得太阳光和水平线的夹角为60°,遮阳篷CD正好将进入窗户AB的阳光挡住;如图3,该同学在冬季某日的正午时刻测得太阳光和水平线的夹角为30°,将遮阳篷收缩成CD′时,遮阳篷正好完全不挡进入窗户AB的阳光.
(1)计算图3中CD′的长度比图2中CD的长度收缩了多少米;(结果保留根号)
(2)如果图3中遮阳篷的长度为图2中CD的长度,请计算该遮阳落在窗户AB上的阴影长度为多少米?(请在图3中画图并标出相应字母,然后再计算)
某校数学兴趣小组想测量大报恩塔的高度.如图,成员小明利用测角仪在B处测得塔顶的仰角α=63.5°,然后沿着正对该塔的方向前进了13.1m到达E处,再次测得塔顶的仰角β=71.6°.测角仪BD的高度为1.4m,那么该塔AC的高度是多少?(参考数据:sin63.5°≈0.90,cs63.5°≈0.45,tan63.5°≈2.00,sin71.6°≈0.95,cs71.6°≈0.30,tan71.6°≈3.00)
如图,已知斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:
(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).
(参考数据:sin76°≈0.97,cs76°≈0.24,tan76°≈4.01)
如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(,结果精确到个位).
某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.
(1)求新坡面的坡角a;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)
如图,大海中某岛C的周围25km范围内有暗礁.一艘海轮向正东方向航行,在A处望见C在北偏东60°处,前进20km后到达点B,测得C在北偏东45°处.如果该海轮继续向正东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.41,≈1.73)
如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)
如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.
(1)求渔船B航行的距离;
(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)
如图,某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)
\s 0 参考答案
解:连接EC,
∵四边形ABCD为矩形,
∴OA=OC , ∠ABC=90°,
利用勾股定理得:AC=10,即OA=5,
∵OE⊥AC,
∴AE=CE,
在Rt△EDC中,设EC=AE=x, 则有ED=AD-AE=8-x, DC=AB=6,
根据勾股定理得:x2=(8-x)2+62,
解得:x= ,
∴AE= ,
在Rt△AOE中,sin∠OEA= .
解:
解:延长DF交AC于点G,设AG=xm.由题意知:DF=13.1 m,DB=FE=GC=1.4 m.
在Rt△ADG中,tan∠ADG=,∴DG==≈,
在Rt△AFG中,tan∠AFG=,∴FG==≈,
∵DF=DG﹣FG,∴﹣=13.1,解得x=78.6,∴AG=78.6 m,
∵AC=AG+GC,∴AC=78.6+1.4=80(m).答:该塔AC的高度约80m.
解:(1)过点A作AH⊥PQ,垂足为点H.
∵斜坡AP的坡度为1:2.4,∴AH:PH=5:12,设AH=5km,则PH=12km,
由勾股定理,得AP=13km.∴13k=26m. 解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.
(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.
∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.
设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.
在Rt△ABC中,tan76°=BC:AC,即x:(x-14)≈4.0,解得x≈19,答:古塔BC的高度约为19米.
解:延长BD,AC交于点E,过点D作DF⊥AE于点F.
∵i=tan∠DCF==,∴∠DCF=30°.又∵∠DAC=15°,∴∠ADC=15°.∴CD=AC=10.
在Rt△DCF中,DF=CD•sin30°=10×=5(米),CF=CD•cs30°=10×=5,∠CDF=60°.∴∠BDF=45°+15°+60°=120°,∴∠E=120°﹣90°=30°,
在Rt△DFE中,EF===5∴AE=10+5+5=10+10.
在Rt△BAE中,BA=AE•tanE=(10+10)×=10+≈16(米).
答:旗杆AB的高度约为16米.
解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,
∴∠α=30°.答:新坡面的坡角a为30°;
(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,
∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,
∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.
解:
∵∠AEB=90°,AB=200,坡度为1:,∴tan∠ABE=,
∴∠ABE=30°,∴AE=AB=100,
∵AC=20,∴CE=80,
∵∠CED=90°,斜坡CD的坡度为1:4,
∴,即,解得,ED=320,
∴CD==米,
答:斜坡CD的长是米.
解:
解:
解:过点D作DM⊥BC于点M,DN⊥AC于点N,如图所示:
则四边形DMCN是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,
在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣10,
在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴x=tan50°•[(x﹣5)],
解得:x≈21,答:建筑物BC的高约为21m.
中考数学三轮冲刺《圆》解答题冲刺练习14(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习14(含答案),共9页。
中考数学三轮冲刺《圆》解答题冲刺练习13(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习13(含答案),共8页。试卷主要包含了5AC=8,等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习11(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习11(含答案),共8页。试卷主要包含了解得m<2;等内容,欢迎下载使用。