![21.3 实际问题与一元二次方程第2课时 用一元二次方程解决增降率问题01](http://img-preview.51jiaoxi.com/2/3/5880844/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![21.3 实际问题与一元二次方程第2课时 用一元二次方程解决增降率问题02](http://img-preview.51jiaoxi.com/2/3/5880844/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程优秀第2课时课后测评
展开21.3 实际问题与一元二次方程
第2课时 用一元二次方程解决增降率问题
.
1.若设每次的平均增长(或降低)率为x,增长(或降低)前的数量为a,则第一次增长(或降低)后的数量为__ ___,第二次增长(或降低)后的数量为__ ___,即__ ___.
2.某商品进价为a元,售价为b元,则利润为__ __元,若一天的销售量为c,则总利润为__ ___元.
.
知识点1:平均变化率问题
1.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1-x)2=100
B.100(1-x)2=144
C.144(1+x)2=100
D.100(1+x)2=144
2.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是( )
A.10% B.15% C.20% D.25%
3.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为__ ___.
4.(某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.
知识点2:市场经济问题
5.某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元,若该商品两次调价的降价率相同,则这个降价率为__ ___;经调查,该商品每降价0.2元,即可多销售10件,若该商品原来每月销售500件,那么两次调价后,每月可销售商品__ ___件.
6.某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?
7.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
.
8.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x2)=196
B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x)2=196
D.50+50(1+x)+50(1+2x)=196
9.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应植多少株?设每盆多植x株,则可以列出的方程是( )
A.(x+3)(4-0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3-0.5x)=15
D.(x+1)(4-0.5x)=15
10.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为__ ___万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.
11.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.
(1)填表(不需化简):
时间 | 第1个月 | 第2个月 | 清仓时 |
单价(元) |
|
|
|
销售量(件) |
|
|
|
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
.
12.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.
(1)若该公司当月售出3部汽车,则每部汽车的进价为__ __万元;
(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)
第2课时 用一元二次方程解决增降率问题
.
1.若设每次的平均增长(或降低)率为x,增长(或降低)前的数量为a,则第一次增长(或降低)后的数量为__a(1±x)___,第二次增长(或降低)后的数量为__a(1±x)(1±x)___,即__a(1±x)2___.
2.某商品进价为a元,售价为b元,则利润为__(b-a)___元,若一天的销售量为c,则总利润为__(b-a)c___元.
.
知识点1:平均变化率问题
1.(2014·昆明)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( D )
A.144(1-x)2=100 B.100(1-x)2=144
C.144(1+x)2=100 D.100(1+x)2=144
2.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是( A )
A.10% B.15% C.20% D.25%3.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为__20%___.
4.(2014·沈阳)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.
解:设这个增长率为x,根据题意得20(1+x)2-20(1+x)=4.8,解得x1=0.2=20%,x2=-1.2(不合题意,舍去),则所求增长率为20%
知识点2:市场经济问题
5.某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元,若该商品两次调价的降价率相同,则这个降价率为__10%___;经调查,该商品每降价0.2元,即可多销售10件,若该商品原来每月销售500件,那么两次调价后,每月可销售商品__880___件.
6.(2014·巴中)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?
解:设每个商品的定价是x元,由题意得(x-40)[180-10(x-52)]=2000,整理得x2-110x+3000=0,解得x1=50,x2=60.当x=50时,进货180-10(x-52)=200,不舍题意,舍去;当x=60时,进货180-10(x-52)=100,符合题意,则该商品应进货100个,定价为60元
7.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
解:设购买了x件这种服装,根据题意得[80-2(x-10)]x=1200,解得x1=20,x2=30.当x=30时,80-2(30-10)=40<50,不符合题意,舍去,∴x=20,则她购买了20件这种服装
.
8.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( C )
A.50(1+x2)=196
B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x)2=196
D.50+50(1+x)+50(1+2x)=196
9.(2014·泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应植多少株?设每盆多植x株,则可以列出的方程是( A )
A.(x+3)(4-0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3-0.5x)=15
D.(x+1)(4-0.5x)=15
10.(2014·南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为__2.6(1+x)2___万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.
解:根据题意得4+2.6(1+x)2=7.146,解得x1=0.1,x2=-2.1(不合题意,舍去),∴可变成本平均每年增长的百分率是10%
11.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.
(1)填表(不需化简):
时间 | 第1个月 | 第2个月 | 清仓时 |
单价 (元) | 80 | 80-x | 40 |
销售量 (件) | 200 | 200+10x | 800-200- (200+10x) |
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
解:依据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000,整理得x2-20x+100=0,解得x1=x2=10,当x=10时,80-x=70>50,则第二个月的单价应是70元
12.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.
(1)若该公司当月售出3部汽车,则每部汽车的进价为__26.8___万元;
(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)
解:设需要售出x部汽车,由题意可知,每部汽车的销售利润为28-[27-0.1(x-1)]=(0.1x+0.9)(万元).当0<x≤10,根据题意,得x(0.1x+0.9)+0.5x=12,整理得x2+14x-120=0,解得x1=-20(不合题意,舍去),x2=6;当x>10时,根据题意,得x(0.1x+0.9)+x=12,整理得x2+19x-120=0,解得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去,则需要售出6部汽车
人教版九年级上册21.3 实际问题与一元二次方程第2课时当堂达标检测题: 这是一份人教版九年级上册21.3 实际问题与一元二次方程第2课时当堂达标检测题,共3页。
初中数学人教版九年级上册21.3 实际问题与一元二次方程第2课时同步测试题: 这是一份初中数学人教版九年级上册21.3 实际问题与一元二次方程第2课时同步测试题,共6页。
初中数学人教版九年级上册21.3 实际问题与一元二次方程第1课时课后作业题: 这是一份初中数学人教版九年级上册21.3 实际问题与一元二次方程第1课时课后作业题,共4页。试卷主要包含了用锤子以均匀的力敲击铁钉入木板等内容,欢迎下载使用。