七年级下册第五章 相交线与平行线综合与测试单元测试当堂检测题
展开(满分100分)
姓名:___________班级:___________学号:___________
一.选择题(共10小题,满分30分,每小题3分)
1.下列哪些图形是通过平移可以得到的( )
A. B. C. D.
2.如图,∠1,∠2是对顶角的是( )
A. B. C. D.
3.如图,∠1的同位角是( )
A.∠4B.∠3C.∠2D.∠1
4.下列语句是命题的是( )
A.画线段ABB.请不要作弊
C.内错角相等D.垂线段最短吗
5.在同一平面内,两条直线可能的位置关系是( )
A.平行B.相交C.相交或平行D.垂直
6.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在( )
A.A点B.B点C.C点D.D点
7.如图,可以判定AD∥BC的条件是( )
A.∠3=∠4B.∠B=∠5
C.∠1=∠2D.∠B+∠BCD=180°
8.下列说法中正确的个数有( )
①同位角相等; ②相等的角是对顶角; ③直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离; ④过一点有且只有一条直线与已知直线平行; ⑤不相交的两条直线叫做平行线; ⑥若两条平行线被第三条直线所截,则一组同旁内角的角平分线互相垂直.
A.2个B.3个C.4个D.1个
9.如图,AB∥CD,∠1=∠2,∠3=130°,则∠2等于( )
A.30°B.25°C.35°D.40°
10.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足( )
A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°
二.填空题(共6小题,满分18分,每小题3分)
11.命题“﹣a一定表示一个负数”是 命题.(填“真”或“假”)
12.如图,∠C=90°,线段AB=15cm,线段AD=12cm,线段AC=9cm,则点A到BC的距离为 cm.
13.如图,是小明学习三线八角时制作的模具,经测量∠2=105°,要使木条a与b平行,则∠1的度数必须是 度.
14.如图,△DEF是由△ABC沿直线BC向右平移得到,若BC=6,当点E刚好移动到BC的中点时,则CF= .
15.如图,已知AO⊥BC于O,∠BOD=120°,那么∠AOD= °.
16.如图,a∥b,直角三角板直角顶点在直线b上.已知∠1=50°,则∠2的度数为 度.
三.解答题(共7小题,满分52分)
17.(6分)已知∠DAC=∠ACB,∠D+∠DFE=180°,求证:EF∥BC.
18.(6分)已知:如图,∠1+∠2=180°,求证:a∥b.
19.(8分)已知:如图,DB⊥AF于点G,EC⊥AF于点H,∠C=∠D.求证:∠A=∠F.
证明:∵DB⊥AF于点G,EC⊥AF于点H(已知),
∴∠DGH=∠EHF=90°( ).
∴DB∥EC( ).
∴∠C= ( ).
∵∠C=∠D(已知),
∴∠D= ( ).
∴DF∥AC( ).
∴∠A=∠F( ).
20.(7分)如图,三角形ABC的顶点坐标分别为A(﹣2,4),B(﹣3,1),C(0,1),BC上的一点P的坐标为(﹣2,1),将三角形ABC向右平移4个单位长度,再向上平移1个单位长度,得到三角形A1B1C1,其中点A,B,C,P分别对应点A1,B1,C1,P1.
(1)在图中画出三角形A1B1C1和点P1;
(2)连接P1A,P1B,直接写出三角形P1AB的面积.
21.(7分)如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠ECG=90°﹣∠HAE.求证:BH∥CD.
22.(8分)如图,已知AD交BE于F,C在AB的延长线上,∠A=∠ADE.
(1)若∠EDC=3∠C,求∠C的度数;
(2)若∠C=∠E.求证:BE∥CD.
23.(10分)如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.
(1)如图1,若∠1与∠2都是锐角,请写出∠C与∠1,∠2之间的数量关系并说明理由.
(2)把Rt△ABC如图2摆放,直角顶点C在两条平行线之间,CB与PQ交于点D,CA与MN交于点E,BA与PQ交于点F,点G在线段CE上,连接DG,有∠BDF=∠GDF,求的值.
(3)如图3,若点D是MN下方一点,BC平分∠PBD,AM平分∠CAD,已知∠PBC=25°,求∠ACB+∠ADB的度数.
参考答案
一.选择题(共10小题,满分30分,每小题3分)
1.解:A、通过旋转得到,故本选项错误;
B、通过平移得到,故本选项正确;
C、通过轴对称得到,故本选项错误;
D、通过旋转得到,故本选项错误.
故选:B.
2.解:根据对顶角的定义,只有选项C的图形符合题意.
故选:C.
3.解:∠1的同位角是∠4,
故选:A.
4.解:A、画线段AB是叙述句,没有对事情做出判断,不是命题,故本选项不符合题意;
B、请不要作弊是祈使句,没有对事情做出判断,不是命题,故本选项不符合题意;
C、内错角相等,对事件做出了判断,是命题,故本选项符合题意;
D、垂线段最短吗是疑问句,没有对事情做出判断,不是命题,故本选项不符合题意;
故选:C.
5.解:在同一个平面内,两条直线只有两种位置关系,即平行或相交,
故选:C.
6.解:根据垂线段最短可得:应建在A处,
故选:A.
7.解:A、∵∠3=∠4,∴AB∥CD,本选项不符合题意;
B、∵∠B=∠5,∴AB∥CD,本选项不符合题意;
C、∵∠1=∠2,∴AD∥BC,本选项符合题意;
D、∵∠B+∠BCD=180°,∴AB∥CD,本选项不符合题意.
故选:C.
8.解:①同位角相等的前提是“两直线平行”,故原题说法错误;
②对顶角相等,但相等的角不一定是对顶角,故原题说法错误;
③直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,故原题说法错误;
④过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;
⑤同一平面内永不相交的两条直线叫做平行线,故原题说法错误;
⑥若两条平行线被第三条直线所截,则一组同旁内角的角平分线互相垂直,故原题说法正确;
正确的说法有1个,
故选:D.
9.解:∵AB∥CD,∠3=130°,
∴∠GAB=∠3=130°,
∵∠BAE+∠GAB=180°,
∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,
∵∠1=∠2,
∴∠2=∠BAE=×50°=25°.
故选:B.
10.解:过C作CF∥AB,
∵AB∥DE,
∴AB∥CF∥DE,
∴∠1=∠α,∠2=180°﹣∠β,
∵∠BCD=95°,
∴∠1+∠2=∠α+180°﹣∠β=95°,
∴∠β﹣∠α=85°.
故选:D.
二.填空题(共6小题,满分18分,每小题3分)
11.解:当a=0时,﹣a=0,﹣a不是负数,
∴命题“﹣a一定表示一个负数”是假命题,
故答案为:假.
12.解:因为∠C=90°,
所以AC⊥BC,
所以A到BC的距离是AC,
因为线段AC=9cm,
所以点A到BC的距离为9cm.
故答案为:9.
13.解:如图,∵∠2=105°,
∴∠3=∠2=105°,
∴要使b与a平行,则∠1+∠3=180°,
∴∠1=180°﹣105°=75°.
故答案为:75.
14.解:由平移的性质可得:BC=EF,BE=CF,
∵BC=6,点E刚好移动到BC的中点,
∴BE=EC=CF=3,
故答案为:3.
15.解:∵AO⊥BC,
∴∠AOB=90°,
∵∠BOD=120°,
∴∠AOD=∠BOD﹣∠AOB=120°﹣90°=30°,
故答案是:30.
16.解:如图,
∵∠1+∠3=90°,
∴∠3=90°﹣∠1=90°﹣50°=40°,
∵a∥b,
∴∠2=∠3=40°,
故答案为:40.
三.解答题(共7小题,满分52分)
17.证明:∵∠DAC=∠ACB,
∴AD∥BC,
∵∠D+∠DFE=180°,
∴AD∥EF,
∴EF∥BC.
18.证明方法一:∵∠1=∠3(对顶角相等),∠1+∠2=180°(已知),
∴∠3+∠2=180°(等量代换),
∴a∥b(同旁内角互补,两直线平行);
证明方法二:∵∠1+∠2=180°(已知),∠1+∠4=180°(邻补角的定义),
∴∠2=∠4(同角的补角相等),
∴a∥b(内错角相等,两直线平行).
19.解:∵DB⊥AF于点G,EC⊥AF于点H(已知),
∴∠DGH=∠EHF=90°(垂直的定义),
∴DB∥EC(同位角相等,两直线平行),
∴∠C=∠DBA(两直线平行,同位角相等),
∵∠C=∠D(已知),
∴∠D=∠DBA(等量代换),
∴DF∥AC(内错角相等,两直线平行),
∴∠A=∠F(两直线平行,内错角相等).
故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.
20.解:(1)如图所示:△A1B1C1和点P1,即为所求;
(2)三角形P1AB的面积为:3×5﹣×2×4﹣×1×3﹣×1×5
=7.
21.证明:过点E作EF∥BH,
∴∠HAE=∠AEF,
∵AE⊥CE,
∴∠AEC=90°
即∠AEF+∠CEF=90°,
∴∠HAE+∠CEF=90°,
∴∠CEF=90°﹣∠HAE,
∵∠ECG=90°﹣∠HAE,
∴∠CEF=∠ECG,
∴EF∥CD,
∵EF∥BH,
∴BH∥CD.
22.解:(1)∵∠A=∠ADE,
∴AC∥DE,
∴∠EDC+∠C=180°,
又∵∠EDC=3∠C,
∴4∠C=180°,
即∠C=45°;
(2)∵AC∥DE,
∴∠E=∠ABE,
又∵∠C=∠E,
∴∠C=∠ABE,
∴BE∥CD.
23.解:(1)∠C=∠1+∠2,
证明:过C作l∥MN,如下图所示,
∵l∥MN,
∴∠4=∠2(两直线平行,内错角相等),
∵l∥MN,PQ∥MN,
∴l∥PQ,
∴∠3=∠1(两直线平行,内错角相等),
∴∠3+∠4=∠1+∠2,
∴∠C=∠1+∠2;
(2)
∵∠BDF=∠GDF,
∵∠BDF=∠PDC,
∴∠GDF=∠PDC,
∵∠PDC+∠CDG+∠GDF=180°,
∴∠CDG+2∠PDC=180°,
∴∠PDC=90°﹣∠CDG,
由(1)可得,∠PDC+∠CEM=∠C=90°,
∴∠AEN=∠CEM,
∴=;
(3)
∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,
∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,
∵PQ∥MN,
∴∠BMA=∠PBD=50°,
∴∠ADB=∠AMB﹣∠MAD=50°﹣∠MAD=50°﹣∠CAM,
由(1)可得,∠ACB=∠PBC+∠CAM,
∴∠ACB+∠ADB=∠PBC+∠CAM+50°﹣∠CAM=50°+50°=100°.
题号
一
二
三
总分
得分
初中数学第五章 相交线与平行线综合与测试单元测试课堂检测: 这是一份初中数学第五章 相交线与平行线综合与测试单元测试课堂检测,共12页。试卷主要包含了同桌读了,下列命题中是真命题的是等内容,欢迎下载使用。
2021学年第五章 相交线与平行线综合与测试课后测评: 这是一份2021学年第五章 相交线与平行线综合与测试课后测评,共14页。试卷主要包含了下列图中是对顶角的为,下列现象中是平移的是,下列命题中,是真命题的是等内容,欢迎下载使用。
数学七年级下册第五章 相交线与平行线综合与测试同步测试题: 这是一份数学七年级下册第五章 相交线与平行线综合与测试同步测试题,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。