


- 相似三角形的性质及应用--知识讲解(基础) 学案 11 次下载
- 相似三角形的性质及应用--巩固练习(基础) 试卷 9 次下载
- 相似三角形的性质及应用--巩固练习(提高) 试卷 14 次下载
- 相似多边形及位似--知识讲解 学案 8 次下载
- 相似多边形及位似--巩固练习 试卷 7 次下载
初中数学人教版九年级下册27.2.2 相似三角形的性质优秀学案
展开【学习目标】
1、探索相似三角形的性质,能运用性质进行有关计算;
2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).
【要点梳理】
要点一、相似三角形的性质
相似三角形的性质及应用 394500
相似形的性质】
1.相似三角形的对应角相等,对应边的比相等.
2. 相似三角形中的重要线段的比等于相似比.
相似三角形对应高,对应中线,对应角平分线的比都等于相似比.
要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.
3. 相似三角形周长的比等于相似比
∽,则
由比例性质可得:
4. 相似三角形面积的比等于相似比的平方
∽,则分别作出与的高和,则
要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.
要点二、相似三角形的应用
1.测量高度
测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.
相似三角形的性质及应用 394500
应用举例及总结】
要点诠释:测量旗杆的高度的几种方法:
平面镜测量法 影子测量法 手臂测量法 标杆测量法
2.测量距离
测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.
2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.
要点诠释:
1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;
2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;
3.视点:观察事物的着眼点(一般指观察者眼睛的位置);
4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.
【典型例题】
类型一、相似三角形的性质
1. (2016•长春)如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,EF与CD交于点G.
(1)求证:BD∥EF;
(2)若=,BE=4,求EC的长.
【思路点拨】(1)根据平行四边的判定与性质,可得答案;
(2)根据相似三角形的判定与性质,可得答案.
【答案】B.
【解析】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∵DF=BE,
∴四边形BEFD是平行四边形,
∴BD∥EF;
(2)∵四边形BEFD是平行四边形,
∴DF=BE=4.
∵DF∥EC,
∴△DFG∽CEG,
∴=,
∴CE==4×=6.
【总结升华】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.
举一反三
【变式】在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求AC边上的高.
【答案】过点B做BF⊥AC,垂足为点F,
∵AD,CE分别为BC,AB边上的高,
∴∠ADB=∠CEB=90°,
又∵∠B=∠B,
∴Rt△ADB∽Rt△CEB,
∴,
且∠B=∠B,
∴△EBD∽△CBA,
∴,
∴,
又∵DE=2,
∴AC=6,
∴
2.已知:如图,在△ABC与△CAD中,DA∥BC,CD与AB相交于E点,
且AE︰EB=1︰2,EF∥BC交AC于F点,△ADE的面积为1,求△BCE和△AEF的面积.
【答案与解析】∵DA∥BC,
∴△ADE∽△BCE.
∴S△ADE:S△BCE=AE2:BE2.
∵AE︰BE=1:2,
∴S△ADE:S△BCE=1:4.
∵S△ADE=1,
∴S△BCE=4.
∵S△ABC:S△BCE=AB:BE=3:2,
∴S△ABC=6.
∵EF∥BC,
∴△AEF∽△ABC.
∵AE:AB=1:3,
∴S△AEF:S△ABC=AE2:AB2=1:9.
∴S△AEF==.
【总结升华】注意,同底(或等底)三角形的面积比等于该底上的高的比;同高(或等高)三角形的面积比等于对应底边的比.当两个三角形相似时,它们的面积比等于对应线段比的平方,即相似比的平方.
举一反三:
相似三角形的性质及应用 394500
例题分析2】
【变式】如图,已知中,,,,,点在上, (与点不重合),点在上.
(1)当的面积与四边形的面积相等时,求的长.
(2)当的周长与四边形的周长相等时,求的长.
【答案】 (1)∵,
∽
.
(2)∵的周长与四边形的周长相等.
=6,
∽
.
类型二、相似三角形的应用
3.(2015春•江津区校级月考)如图,直立在B处的标杆AB=2.4m,直立在F处的观测者从E处看到标杆顶A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8m,FB=2.5m,人高EF=1.5m,求树高CD.
【答案与解析】解:过E作EH⊥CD交CD于H点,交AB于点G,如下图所示:
由已知得,EF⊥FD,AB⊥FD,CD⊥FD,
∵EH⊥CD,EH⊥AB,
∴四边形EFDH为矩形,
∴EF=GB=DH=1.5米,EG=FB=2.5米,GH=BD=8米,
∴AG=AB﹣GB=2.4﹣1.5=0.9米,
∵EH⊥CD,EH⊥AB,
∴AG∥CH,
∴△AEG∽△CEH,
∴=,
∴=,
解得:CH=3.78米,
∴DC=CH+DH=3.78+1.5=5.28米.
答:故树高DC为5.2米.
【总结升华】本题考查了相似三角形在实际问题中的运用,关键是正确作出辅助线,构造出相似三角形.
举一反三:
【变式】已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m宽的亮区DE.亮区一边到窗下的墙脚距离CE=1.2m,窗口高AB=1.8m,求窗口底边离地面的高度BC.
【答案】作EF⊥DC交AD于F.
∵AD∥BE,∴
又∵,
∴,
∴.
∵AB∥EF, AD∥BE,
∴四边形ABEF是平行四边形,
∴EF=AB=1.8m.
∴m.
4.(2015•齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015= .
【思路点拨】本题考查相似三角形的判定与性质以及正方形的性质,根据已知条件得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,从而找出规律答案即可求出.菁优
【答案与解析】2()2014
解:∵四边形ABCB1是正方形,
∴AB=AB1,AB∥CB1,
∴AB∥A1C,
∴∠CA1A=30°,
∴A1B1=,AA1=2,
∴A1B2=A1B1=,
∴A1A2=2,
同理:A2A3=2()2,
A3A4=2()3,
…
∴AnAn+1=2()n,
∴A2014A2015=2()2014,
故答案为:2()2014.
【总结升华】本题是相似性质的运用与找规律相结合的一道题,要注意从特殊到一般形式的变换规律.
37角(提高)知识讲解学案: 这是一份37角(提高)知识讲解学案,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
2020-2021学年4.3.1 角学案设计: 这是一份2020-2021学年4.3.1 角学案设计,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
数学4.3.1 角学案: 这是一份数学4.3.1 角学案,共10页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。