数学人教版第二十四章 圆24.1 圆的有关性质24.1.1 圆背景图ppt课件
展开解:(1)如图,连接AC,∵PA是⊙O的切线,∴OA⊥PA,在Rt△AOP中,∠AOP=90°-∠APO=90°-30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形
3.(2019·玉林)如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.
4.(2019·淮安)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.
5.(沈阳中考)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.
6.(2019·贵阳)如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交AP的延长线于点D.如果∠D=90°,DP=1,求⊙O的直径.
7.如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.
8.(河南中考)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.
解:(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=EF (2)①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形
人教版第二十四章 圆24.1 圆的有关性质24.1.1 圆作业课件ppt: 这是一份人教版第二十四章 圆24.1 圆的有关性质24.1.1 圆作业课件ppt,共13页。
中考数学专题与圆有关的计算和证明课件PPT: 这是一份中考数学专题与圆有关的计算和证明课件PPT,共53页。PPT课件主要包含了图Z4-1,■题型精练,图Z4-2,图Z4-3,图Z4-4,图Z4-5,图Z4-6,图Z4-7,图Z4-8,图Z4-9等内容,欢迎下载使用。
中考与圆的切线有关的证明与计算课件: 这是一份中考与圆的切线有关的证明与计算课件,共14页。PPT课件主要包含了课前热身,温故知新,例题1,例题2一图多题,中考链接,拓展提升等内容,欢迎下载使用。