|教案下载
搜索
    上传资料 赚现金
    2021年北师大版九年级数学下册 3.2 圆的对称性1 教案设计
    立即下载
    加入资料篮
    2021年北师大版九年级数学下册 3.2 圆的对称性1  教案设计01
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第三章 圆2 圆的对称性教案及反思

    展开
    这是一份初中数学第三章 圆2 圆的对称性教案及反思,共3页。教案主要包含了情境导入,合作探究,eq \)的度数.,板书设计等内容,欢迎下载使用。




    1.理解圆的旋转不变性;(重点)


    2.掌握圆心角、弧、弦之间相等关系的定理;(重点)


    3.能应用圆心角、弧、弦之间的关系解决问题.(难点)











    一、情境导入





    我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?


    二、合作探究


    探究点:圆心角、弧、弦之间的关系


    【类型一】 利用圆心角、弧、弦之间的关系证明线段相等


    如图,M为⊙O上一点,eq \(MA,\s\up8(︵))=eq \(MB,\s\up8(︵)),MD⊥OA于D,ME⊥OB于E,求证:MD=ME.





    解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.


    证明:连接MO,∵ eq \(MA,\s\up8(︵))=eq \(MB,\s\up8(︵)),∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.


    方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.


    变式训练:见《学练优》本课时练习“课堂达标训练”第7题


    【类型二】 利用圆心角、弧、弦之间的关系证明弧相等


    如图,在⊙O中,AB、CD是直径,CE∥AB且交圆于E,求证:eq \(BD,\s\up8(︵))=eq \(BE,\s\up8(︵)).





    解析:首先连接OE,由CE∥AB,可证得∠DOB=∠C,∠BOE=∠E,然后由OC=OE,可得∠C=∠E,继而证得∠DOB=∠BOE,则可证得eq \(BD,\s\up8(︵))=eq \(BE,\s\up8(︵)).


    证明:连接OE,∵CE∥AB,∴∠DOB=∠C,∠BOE=∠E.∵OC=OE,∴∠C=∠E,∴∠DOB=∠BOE,∴eq \(BD,\s\up8(︵))=eq \(BE,\s\up8(︵)).


    方法总结:此类题主要运用了圆心角与弧的关系以及平行线的性质.注意掌握辅助线的作法及数形结合思想的应用.


    变式训练:见《学练优》本课时练习“课后巩固提升”第8题


    【类型三】 综合运用圆心角、弧、弦之间的关系进行计算


    如图,在△ABC中,∠ACB=90°,∠B=36°,以C为圆心,CA为半径的圆交AB于点D,交BC于点E.求eq \(AD,\s\up8(︵)) 、eq \(DE,\s\up8(︵))的度数.





    解析:连接CD,由直角三角形的性质求出∠A的度数,再根据等腰三角形及三角形内角和定理分别求出∠ACD及∠DCE的度数,由圆心角、弧、弦的关系即可得出eq \(AD,\s\up8(︵))、eq \(DE,\s\up8(︵))的度数.


    解:连接CD,∵△ABC是直角三角形,∠B=36°,∴∠A=90°-36°=54°.∵AC=DC,∴∠ADC=∠A=54°,∴∠ACD=180°-∠A-∠ADC=180°-54°-54°=72°,∴∠BCD=∠ACB-∠ACD=90°-72°=18°.∵∠ACD、∠BCD分别是eq \(AD,\s\up8(︵)),eq \(DE,\s\up8(︵))所对的圆心角,∴eq \(AD,\s\up8(︵))的度数为72°,eq \(DE,\s\up8(︵))的度数为18°.


    方法总结:解决本题的关键是根据题意作出辅助线,构造出等腰三角形.


    变式训练:见《学练优》本课时练习“课堂达标训练”第8题


    【类型四】 有关圆心角、弧、弦之间关系的探究性问题


    如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),





    直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO?若存在,求出相应的∠OCP的大小;若不存在,请简要说明理由.


    解析:点P是直线l上的一个动点,因而点P与线段OA有三种位置关系:点P在线段OA上,点P在OA的延长线上,点P在OA的反向延长线上.分这三种情况进行讨论即可.


    解:当点P在线段OA上(如图①),在△QOC中,OC=OQ,∴∠OQC=∠OCP.在△OPQ中,QP=QO,∴∠QOP=∠QPO.又∵∠AOC=30°.∴∠QPO=∠OCP+∠AOC=∠OCP+30°.在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得3∠OCP=120°,∴∠OCP=40°;





    当P在线段OA的延长线上(如图②),∵OC=OQ,∴∠OQP=(180°-∠QOC)×eq \f(1,2)=90°-eq \f(1,2)∠QOC.∵OQ=PQ,∴∠OPQ=(180°-∠OQP)×eq \f(1,2)=45°+eq \f(1,4)∠QOC.在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°,∴30°+∠QOC+90°-eq \f(1,2)∠QOC+45°+eq \f(1,4)∠QOC=180°,∴∠QOC=20°,则∠OQP=80°,∴∠OCP=100°;





    当P在线段OA的反向延长线上(如图③),∵OC=OQ,∴∠OCP=∠OQC=(180°-∠COQ)×eq \f(1,2)=90°-eq \f(1,2)∠COQ.∵OQ=PQ,∴∠OPQ=∠POQ=eq \f(1,2)∠OQC=45°-eq \f(1,4)∠COQ.∵∠AOC=30°,∴∠COQ+∠POQ=150°,∴∠COQ+45°-eq \f(1,4)∠COQ=150°,∴∠COQ=140°,∴∠OCP=(180°-140°)×eq \f(1,2)=20°.


    方法总结:本题通过同圆的半径相等,将圆的问题转化为等腰三角形的问题,是一种常见的解题方法,还要注意分类讨论思想的运用.


    三、板书设计


    圆的对称性


    1.圆心角、弧、弦之间的关系


    2.应用圆心角、弧、弦之间的关系解决问题





    本节课的教学策略是通过学生自己动手画图叠合、观察思考等操作活动,让学生亲身经历知识的发生、发展及其探求过程,再通过教师演示动态教具引导,让学生感受圆的旋转不变性,并得出圆心角、弧、弦三者之间的关系,能用这一关系定理,解决圆的计算证明问题,同时注重培养学生的探索能力和逻辑推理能力,力求体验数学的生活性、趣味性.
    相关教案

    北师大版九年级下册2 圆的对称性教学设计及反思: 这是一份北师大版九年级下册<a href="/sx/tb_c10087_t8/?tag_id=27" target="_blank">2 圆的对称性教学设计及反思</a>,共5页。

    北师大版九年级下册2 圆的对称性教学设计: 这是一份北师大版九年级下册2 圆的对称性教学设计,共6页。

    北师大版九年级下册2 圆的对称性教案及反思: 这是一份北师大版九年级下册2 圆的对称性教案及反思,共6页。教案主要包含了问题探索等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map