


初中数学人教版九年级上册21.3 实际问题与一元二次方程精练
展开一.选择题
1.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程( )
A.(50﹣)x=900B.(60﹣x)x=900
C.(50﹣x)x=900D.(40﹣x)x=900
2.某机械厂一月份生产零件50万个,第一季度生产零件200万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x)2=200
B.50+50(1+x)2=200
C.50+50(1+x)+50(1+x)2=200
D.50+50(1+x)+50(1+2x)=200
3.在一块长80cm,宽60cm的长方形铁皮的四个角上截去四个相同的小正方形,然后做成底面积是1500cm2的无盖长方体盒子,设小正方形的边长为xcm,则可列出的方程为( )
A.x2﹣70x+825=0B.x2+70x﹣825=0
C.x2﹣70x﹣825=0D.x2+70x+825=0
4.我校图书馆三月份借出图书70本,计划四、五月份共借出图书220本,设四、五月份借出的图书每月平均增长率为x,则根据题意列出的方程是( )
A.70(1+x)2=220
B.70(1+x)+70(1+x)2=220
C.70(1﹣x)2=220
D.70+70(1+x)+70(1+x)2=220
5.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降低至1.21%,设平均每次降息的百分率为x,则x满足方程( )
A.2.25%(1﹣2x)=1.21%B.1.21%(1+2x)=2.25%
C.1.21%(1+x)2=2.25%D.2.25%(1﹣x)2=1.21%
6.如图,幼儿园计划用30m的围栏靠墙围成一个面积为100m2的矩形小花园(墙长为15m),则与墙垂直的边x为( )
A.10m或5mB.5m或8mC.10mD.5m
7.已知某公司一月份的收益为10万元,后引进先进设备,收益连续增长,到三月份统计共收益50万元,求二月、三月的平均增长率,设平均增长率为x,可得方程为( )
A.10(1+x)2=50B.10(1+x)2=40
C.10(1+x)+10(1+x)2=50D.10(1+x)+10(1+x)2=40
8.为了美化环境,我县加大对绿化的投资,2018年用于绿化的投资为20万元,2020年用于绿化的投资为25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意,所列方程为( )
A.20x2=25B.20(1+x)=25
C.20(1+x)2=25D.20(1+x)+20(1+x)2=25
9.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( )
A.6B.7C.8D.9
10.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程( )
A.1+x=225B.1+x2=225
C.(1+x)2=225D.1+(1+x2 )=225
11.受非洲猪瘟及其他因素影响,2019年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )
A.23(1﹣x%)2=60B.23(1+x%)2=60
C.23(1+x2%)=60D.23(1+2x%)=60
12.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( )
A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400
C.62×42﹣62x﹣42x=2400D.62x+42x=2400
13.在2020年元旦期间,某商场销售某种冰箱,每台进货价为2500元,调查发现:当销售价为2900元时,平均毎天能销售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?设每台冰箱定价x元,根据题意,可列方程为( )
A.(x﹣2500)(8+4×)=5000
B.(x﹣2500)(8+4×)=5000
C.(2900﹣x﹣2500)(8+4×)=5000
D.(2900﹣x)(8+4×)=5000
二.填空题
14.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价 元.
15.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区2016年底有国口12万人,通过社会各界的努力,2018年底贫困人口减少至2万人,设2016至2018年底该地区贫困人口的年平均的下降率为x.根据题意可列方程为 .
16.某地区PM2.5的年平均值经过测算,2018年为180,经过治理后,2020年为80,如果设PM2.5的平均值每年的降低率均为x,列出关于x的方程: .
17.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是 .
18.一次会议上,每两个参加会议的人都相互握了一次手,有人统计一共握了66次手,求这次会议到会的人数,若设这次会议到会人数为x,则根据题意可列方程 .
19.元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有 个同学.
20.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为 .
三.解答题
21.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.
(1)若每件衬衫降价5元,商场可售出多少件?
(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?
22.2019年12月以来,湖北省武汉市发现一种新型冠状病毒感染引起的急性呼吸道传染病.感染者的临床表现为:以发热、乏力、干咳为主要表现.约半数患者多在一周后出现呼吸困难,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍.国家卫健委已发布1号公告,将新型冠状病毒感染的肺炎纳入传染病防治法规定的乙类传染病,但采取甲类传染病的预防、控制措施,同时将其纳入检疫传染病管理.
(1)在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?
(2)某小区物管为预防业主感染传播购买A型和B型两种3M口罩,购买A型3M口罩花费了2500元,购买B型3M口罩花费了2000元,且购买A型3M口罩数量是购买B型3M口罩数量的2倍,已知购买一个B型3M口罩比购买一个A型3M口罩多花3元.则该物业购买A、B两种3M口罩的单价为多少元?
(3)由于实际需要,该物业决定再次购买这两种3M口罩,已知此次购进A型和B型两种3M口罩的数量一共为1000个,恰逢市场对这两种3M口罩的售价进行调整,A型3M口罩售价比第一次购买时提高了20%,B型3M口罩按第一次购买时售价的1.5倍出售,如果此次购买A型和B型这两种3M口罩的总费用不超过7800元,那么此次最多可购买多少个B型3M口罩?
23.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:
(1)经过几秒后,△PBQ的面积等于8cm2?
(2)经过几秒后,P,Q两点间距离是cm?
24.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.
(1)求道路宽多少米;
(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?
参考答案
一.选择题
1. B.
2. C.
3. A.
4. B.
5. D.
6. C.
7.D.
8. C.
9. D.
10. C.
11. B.
12. A.
13. B.
二.填空题
14. 4.
15. 12(1﹣x)2=2.
16. 180(1﹣x)2=80.
17. 65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.
18. x(x﹣1)=66.
19. 40.
20. x(5﹣x)=6.
三.解答题
21.(1)∵每件衬衫降价1元,商场平均每天可多售出2件,
∴每件衬衫降价5元,可售出20+5×2=30(件).
(2)设每件衬衫应降价x元,据题意得:
(40﹣x)(20+2x)=1200,
解得:x=10或x=20.
答:每件衬衫应降价10元或20元.
22.(1)设每轮传染中平均一个人传染了x人,
依题意,得:2+2x+x(2+2x)=288,
解得:x1=11,x2=﹣13(不合题意,舍去).
答:每轮传染中平均一个人传染了11人.
(2)设该物业购买A种3M口罩的单价为y元,则B种3M口罩的单价为(y+3)元,
由题意得,,
解得,y=5,
经检验y=5是原方程的解,
则y+3=8,
答:该物业购买A种3M口罩的单价为5元,B种3M口罩的单价为8元;
(3)设此次可购买a个B型3M口罩,则购买(1000﹣a个A型3M口罩,
由题意可得,5(1+20%)×(1000﹣a)+8×1.5a≤7800,
解得,a≤300,
答:此次最多可购买300个B型3M口罩.
23.(1)设经过x秒后,△PBQ的面积等于8cm2,则BP=(6﹣x)cm,BQ=2xcm,
依题意,得:(6﹣x)×2x=8,
化简,得:x2﹣6x+8=0,
解得:x1=2,x2=4.
答:经过2秒或4秒后,△PBQ的面积等于8cm2.
(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2ycm,
依题意,得:(6﹣y)2+(2y)2=()2,
化简,得:5y2﹣12y﹣17=0,
解得:y1=,y2=﹣1(不合题意,舍去).
答:经过秒后,P,Q两点间距离是cm.
24.(1)设道路宽x米,根据题意得:
(50﹣2x)(30﹣x)=1392,
整理得:x2﹣55x+54=0,
解得:x=1或x=54(不合题意,舍去),
故道路宽1米.
(2)设选A种类型步道砖y平方米,根据题意得:
300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,
解得:y≤50.
故最多选A种类型步道砖50平方米.
初中数学人教版九年级上册21.3 实际问题与一元二次方程综合训练题: 这是一份初中数学人教版九年级上册21.3 实际问题与一元二次方程综合训练题,共5页。试卷主要包含了5x=182等内容,欢迎下载使用。
初中数学人教版九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程达标测试: 这是一份初中数学人教版九年级上册第二十一章 一元二次方程21.3 实际问题与一元二次方程达标测试,共12页。
人教版21.3 实际问题与一元二次方程课时训练: 这是一份人教版21.3 实际问题与一元二次方程课时训练,共4页。试卷主要包含了 答等内容,欢迎下载使用。