北师大版2021年中考数学总复习《概率的进一步认识》(含答案) 试卷
展开北师大版2021年中考数学总复习
《概率的进一步认识》
一 、选择题
1.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )
A.至少有1个球是黑球 B.至少有1个球是白球
C.至少有2个球是黑球 D.至少有2个球是白球
2.下列事件中,是必然事件的为( )
A.3天内会下雨 B.打开电视,正在播放广告
C.367人中至少有2人公历生日相同 D.某妇产医院里,下一个出生的婴儿是女孩
3.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )
A. B. C. D.
4.市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )
A. B. C. D.1
5.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )
A. B. C. D.
6.将1、2、3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x图象上的概率是( )
A.0.3 B.0.5 C. D.
7.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )
A. B. C. D.
8.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是,则正面画有正三角形的卡片张数为( )
A.3 B.5 C.10 D.15
二 、填空题
9.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为________.
10.在一个袋子里装有10个球,其中6个红球,3个黄球,1个绿球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球的概率是 .
11.从数﹣2,﹣0.5,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是 .
12.已知一次函数y=kx+b,k从2,﹣3中随机取一个值,b从1,﹣1,﹣2中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为 .
三 、解答题
13.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.
(1)求从袋中摸出一个球是黄球的概率;
(2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于.问至少取出了多少个黑球?
14.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:
(1)参加复选的学生总人数为 人,扇形统计图中短跑项目所对应圆心角的度数为 °;
(2)补全条形统计图,并标明数据;
(3)求在跳高项目中男生被选中的概率.
15.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).
16.“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;
(2)请补全条形统计图;
(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.
参考答案
1.A
2.答案为:C
3.答案为:C
4.C
5.答案为:D
6.C
7.答案为:B
8.B
9.答案为:
10.答案为:0.4.
11.答案为:.
12.答案为:1/3.
13.解:
14.解:(1)由扇形统计图和条形统计图可得:
参加复选的学生总人数为:(5+3)÷32%=25(人);
扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.
故答案为:25,72;
(2)长跑项目的男生人数为:25×12%﹣2=1,
跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.
如下图:
(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,
∴跳高项目中男生被选中的概率=.
15.解:(1)∵A是36°,
∴A占36°÷360=10%,
∵A的人数为20人,
∴这次被调查的学生共有:20÷10%=200(人),
故答案为:200;
(2)如图,C有:200﹣20﹣80﹣40=60(人),[来源:]
(3)画树状图得:
∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,
∴恰好同时选中甲、乙两位同学的概率为: =.
16.解:(1)接受问卷调查的学生共有30÷50%=60(人),
扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,
故答案为:60、90°;
(2)“了解”的人数为:60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)画树状图得:
∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
∴恰好抽到1个男生和1个女生的概率为=.