- 4.4 第4课时 黄金分割 PPT课件 课件 26 次下载
- 4.5 相似三角形判定定理的证明 PPT课件 课件 25 次下载
- 4.7 第1课时 相似三角形中的对应线段之比 PPT课件 课件 24 次下载
- 4.7 第2课时 相似三角形的周长和面积之比 PPT课件 课件 26 次下载
- 4.8 第1课时 位似多边形及其性质 PPT课件 课件 22 次下载
初中数学北师大版九年级上册6 利用相似三角形测高示范课课件ppt
展开1.通过测量旗杆的高度的活动,并复习巩固相似三角形有关知识.(重点)2.灵活运用三角形相似的知识解决实际问题.(难点)
世界上最高的树—— 红杉
台北101大楼
怎样测量这些非常高大物体的高度?
据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.
例1 如图,木杆 EF 长 2 m,它的影长 FD 为3m,测得 OA 为 201 m,求金字塔的高度 BO.
解:太阳光是平行的光线,因此 ∠BAO =∠EDF.
又 ∠AOB =∠DFE = 90°,∴△ABO ∽△DEF.
因此金字塔的高度为134 m.
表达式:物1高 :物2高 = 影1长 :影2长
测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.
1. 如图,要测量旗杆 AB 的高度, 可在地面上竖一根竹竿 DE, 测量出 DE 的长以及 DE 和 AB 在同一时刻下地面上的影长即 可,则下面能用来求AB长的等 式是 ( ) A. B. C. D.
2. 如图,九年级某班数学兴趣小组的同学想利用所学 数学知识测量学校旗杆的高度,当身高 1.6 米的楚 阳同学站在 C 处时,他头顶端的影子正好与旗杆 顶端的影子重合,同一时刻,其他成员测得 AC = 2 米,AB = 10 米,则旗杆的高度是______米.
例2 如图,左、右并排的两棵大树的高分别是 AB = 8 m 和 CD = 12 m,两树底部的距离 BD = 5 m,一个人估计自己眼睛距离地面 1.6 m,她沿着正对这两棵树的一条水平直路 l 从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C 了?
分析:如图,设观察者眼睛的位置 (视点) 为点 F,画出观察者的水平视线 FG,它交 AB,CD 于点 H,K.视线 FA,FG 的夹角 ∠AFH 是观察点 A 的仰角. 类似地,∠CFK 是观察点 C 时的仰角,由于树的遮挡,区域Ⅰ和Ⅱ都在观察者看不到的区域 (盲区) 之内. 再往前走就根本看不到 C 点了.
由此可知,如果观察者继续前进,当她与左边的树的距离小于 8 m 时,由于这棵树的遮挡,就看不到右边树的顶端 C .
解:如图,假设观察者从左向右走到点 E 时,她的眼 睛的位置点 E 与两棵树的顶端点 A,C 恰在一条 直线上. ∵AB⊥l,CD⊥l,∴AB∥CD. ∴△AEH∽△CEK.
测量不能到达顶部的物体的高度,也可以用“利用标杆测量高度”的原理解决.
练一练:如图,小明为了测量一棵树CD的高度,他在距树24m处立了一根高为2m的标杆EF,然后小明前后调整自己的位置,当他与树相距27m的时候,他的眼睛、标杆的顶端和树的顶端在同一条直线上.已知小明的眼高1.6m,求树的高度.
解析:人、树、标杆相互平行,添加辅助线,过点A作AN∥BD交ID于N,交EF于M,则可得△AEM∽△ACN.
解:过点A作AN∥BD交CD于N,交EF于M,因为人、标杆、树都垂直于地面,∴∠ABF=∠EFD=∠CDF=90°,∴AB∥EF∥CD, ∴∠EMA=∠CNA.∵∠EAM=∠CAN,∴△AEM∽△ACN ,∴ .∵AB=1.6m , EF=2m , BD=27m , FD=24m ,∴ , ∴CN=3.6(m),∴CD=3.6+1.6=5.2(m).故树的高度为5.2m.
还可以有其他测量方法吗?
例3:为了测量一棵大树的高度,某同学利用手边的工具(镜子、皮尺)设计了如下测量方案:如图,①在距离树AB底部15m的E处放下镜子;②该同学站在距离镜子1.2m的C处,目高CD为1.5m;③观察镜面,恰好看到树的顶端.你能帮助他计算出大树的大约高度吗?
解:∵∠1=∠2,∠DCE=∠BAE=90°,∴△DCE∽△BAE.∴ ,解得 BA=18.75(m).因此,树高约为18.75m.
测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.
如图是小明设计用手电来测量某古城墙高度的示意图,点 P 处放一水平的平面镜,光线从点 A出发经平面镜反射后,刚好射到古城墙的顶端 C 处,已知 AB = 2 米,且测得 BP = 3 米,DP = 12 米,那么该古城墙的高度是 ( )A. 6米 B. 8米 C. 18米 D. 24米
利用三角形相似测高的模型:
1. 小明身高 1.5 米,在操场的影长为 2 米,同时测得 教学大楼在操场的影长为 60 米,则教学大楼的高 度应为 ( ) A. 45米 B. 40米 C. 90米 D. 80米
2. 小刚身高 1.7 m,测得他站立在阳光下的影子长为 0.85 m,紧接着他把手臂竖直举起,测得影子长 为 1.1 m,那么小刚举起的手臂超出头顶 ( ) A. 0.5m B. 0.55m C. 0.6m D . 2.2m
3. 如图所示,有点光源 S 在平面镜上面,若在 P 点看 到点光源的反射光线,并测得 AB=10 cm,BC= 20 cm,PC⊥AC,且 PC=24 cm,则点光源 S 到平 面镜的距离 SA 的长度为 .
4.如图 ,利用标杆BE测量建筑物的高度。如果标杆BE高1.2m,测得AB=1.6m,BC=12.4m,楼高CD是多少?
∵EB⊥AC , CD⊥AC
5. 如图,某校数学兴趣小组利用自制的直角三角形硬 纸板 DEF 来测量操场旗杆 AB 的高度,他们通过调 整测量位置,使斜边 DF 与地面保持平行,并使边 DE 与旗杆顶点 A 在同一直线上,已知 DE = 0.5 米, EF = 0.25 米,目测点 D 到地面的距离 DG = 1.5 米, 到旗杆的水平距离 DC = 20 米,求旗杆的高度.
解:由题意可得:△DEF∽△DCA,
∵DE=0.5米,EF=0.25米,DG=1.5米,DC=20米,
解得:AC = 10,故 AB = AC + BC = 10 + 1.5 = 11.5 (m).答:旗杆的高度为 11.5 m.
6. 如图,某一时刻,旗杆 AB 的影子的一部分在地面 上,另一部分在建筑物的墙面上.小明测得旗杆 AB 在地面上的影长 BC 为 9.6 m,在墙面上的影 长 CD 为 2 m.同一时刻,小明又测得竖立于地面 长 1 m 的标杆的影长为 1.2 m.请帮助小明求出旗 杆的高度.
解:如图:过点 D 作 DE∥BC,交 AB 于点 E,∴ DE = CB = 9.6 m,BE = CD = 2 m,∵ 在同一时刻物高与影长成正比例,∴ EA : ED=1 : 1.2,∴ AE = 8 m,∴ AB = AE + EB = 8 + 2 = 10 (m),∴ 学校旗杆的高度为 10 m.
数学九年级上册6 利用相似三角形测高课堂教学ppt课件: 这是一份数学九年级上册6 利用相似三角形测高课堂教学ppt课件,共21页。PPT课件主要包含了思考问题,方法1利用影子,方法2利用标杆,②标杆的高EF,方法3利用镜子,课堂小结等内容,欢迎下载使用。
北师大版九年级上册6 利用相似三角形测高试讲课ppt课件: 这是一份北师大版九年级上册6 利用相似三角形测高试讲课ppt课件,文件包含46利用相似三角形测高pptx、第四章图形的相似与整理46利用相似三角形测高教案内含练习docx、教案利用相似三角形测高doc等3份课件配套教学资源,其中PPT共16页, 欢迎下载使用。
初中数学北师大版九年级上册6 利用相似三角形测高优秀课件ppt: 这是一份初中数学北师大版九年级上册6 利用相似三角形测高优秀课件ppt,文件包含46利用相似三角形测高pptx、第四章图形的相似与整理46利用相似三角形测高教案内含练习docx、教案利用相似三角形测高doc等3份课件配套教学资源,其中PPT共25页, 欢迎下载使用。