还剩23页未读,
继续阅读
所属成套资源:2021届高三新高考数学人教A版一轮复习教学案()
成套系列资料,整套一键下载
2021届高三新高考数学人教A版一轮复习教学案:第四章第5节 函数y=Asin(ωx+φ)的图象及应用
展开
第5节 函数y=Asin(ωx+φ)的图象及应用
考试要求 1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
知 识 梳 理
1.函数y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
φ
2.用“五点法”画y=Asin(ωx+φ)(A>0,ω>0,|φ|<)一个周期内的简图时,要找五个关键点
x
-
-+
-
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径
[常用结论与微点提醒]
1.函数y=Asin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.
2.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.
诊 断 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)将函数y=3sin 2x的图象左移个单位长度后所得图象的解析式是y=3sin.( )
(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )
(3)函数y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( )
(4)由图象求解析式时,振幅A的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )
解析 (1)将函数y=3sin 2x的图象向左平移个单位长度后所得图象的解析式是y=3cos 2x.
(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为.故当ω≠1时平移的长度不相等.
答案 (1)× (2)× (3)√ (4)√
2.(新教材必修第一册P240T1改编)为了得到函数y=sin的图象,只需把函数y=sin 2x图象上所有的点( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
解析 因为y=sin=sin 2,所以要得到其图象,需把y=sin 2x图象上所有的点向左平移个单位长度.
答案 C
3.(老教材必修4P66T4改编)如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y=Asin(ωx+φ)+b.则这段曲线的函数解析式为________________.
解析 观察图象可知从8~14时的图象是y=Asin(ωx+φ)+b的半个周期的图象,
∴A=×(50-30)=10,b=×(50+30)=40.
∵×=14-8,∴ω=,
∴y=10sin+40.
将x=8,y=30代入上式,解得φ=.
∴所求解析式为y=10sin+40,x∈[8,14].
答案 y=10sin+40,x∈[8,14]
4.(2019·衡水中学联考)将曲线C1:y=2cos上的点向右平移个单位长度,再将各点横坐标缩短为原来的,纵坐标不变,得到曲线C2,则C2的方程为( )
A.y=2sin 4x B.y=2sin
C.y=2sin x D.y=2sin
解析 将曲线C1:y=2cos上的点向右平移个单位长度,可得y=2sin 2x的图象,再将各点横坐标缩短为原来的,纵坐标不变,可得曲线C2:y=2sin 4x,故选A.
答案 A
5.(2020·绵阳诊断改编)y=cos(x+1)图象上相邻的最高点和最低点之间的距离是________.
解析 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为.
答案
6.(2020·太原一模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图,则函数g(x)=cos(4φx+ω)的解析式为________.
解析 由题图可得A=2,=6-(-2)=8,
∴T==16,∴ω=,则f(x)=2sin.
∵函数f(x)的图象过点(6,0),且在点(6,0)附近递增,
∴+φ=2kπ,k∈Z,∴φ=-+2kπ,k∈Z.
又|φ|<π,则φ=-,故g(x)=cos.
答案 g(x)=cos
考点一 函数y=Asin(ωx+φ)的图象及变换
【例1】 某同学用“五点法”画函数f(x)=Asin(ωx+φ) 在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ
0
π
2π
x
Asin(ωx+φ)
0
5
-5
0
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.
解 (1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:
ωx+φ
0
π
2π
x
π
Asin(ωx+φ)
0
5
0
-5
0
且函数解析式为f(x)=5sin.
(2)由(1)知f(x)=5sin,
得g(x)=5sin.
因为函数y=sin x图象的对称中心为(kπ,0)(k∈Z).
令2x+2θ-=kπ,k∈Z,解得x=+-θ(k∈Z).
由于函数y=g(x)的图象关于点成中心对称,所以令+-θ=(k∈Z),解得θ=-(k∈Z).
由θ>0可知,当k=1时,θ取得最小值.
规律方法 作函数y=Asin(ωx+φ)(A>0,ω>0)的图象常用如下两种方法:
(1)五点法作图,用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;
(2)图象的变换法,由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.
【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是( )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
(2)(2020·石家庄调研)若把函数y=sin的图象向左平移个单位长度,所得到的图象与函数y=cos ωx的图象重合,则ω的一个可能取值是( )
A.2 B. C. D.
解析 (1)易知C1:y=cos x=sin,把曲线C1上的各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin的图象,再把所得函数的图象向左平移个单位长度,可得函数y=sin=sin的图象,即曲线C2,因此D项正确.
(2)y=sin和函数y=cos ωx的图象重合,可得π-=+2kπ,k∈Z,则ω=6k+2,k∈Z.
∴2是ω的一个可能值.
答案 (1)D (2)A
考点二 由图象求函数y=Asin(ωx+φ)的解析式
【例2】 (1)(一题多解)(2019·长郡中学、衡阳八中联考)函数f(x)=sin(ωx+φ)的部分图象如图所示,已知A,B,则f(x)图象的对称中心为( )
A.(k∈Z) B.(k∈Z)
C.(k∈Z) D.(k∈Z)
(2)(2020·河南六市联考)函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象如图所示,则f(2 019)的值为________.
解析 (1)法一 T=2=π=,∴ω=2,
因此f(x)=sin(2x+φ).
由五点作图法知A是“第二点”,得2×+φ=,
所以φ=-.
∴f(x)=sin.
令2x-=kπ(k∈Z),得x=+(k∈Z).
∴f(x)图象的对称中心为(k∈Z).
法二 T=2=π,由题图知,A,B的中点为f(x)图象的一个对称中心,从而f(x)图象对称中心的横坐标为+=+=+(k,m∈Z).
所以f(x)图象的对称中心为(k∈Z).
(2)由题意可知=-1=,得T=6,
又知T=,ω>0,∴ω=.∴f(x)=Asin.
又∵f(1)=A,∴Asin=A,即sin=1.
又0≤φ<2π,∴φ=.∴f(x)=Asin.
又知f(0)=1,
∴Asin =1,得A=2,∴f(x)=2sin.
∴f(2 019)=2sin=2sin
=2sin=2sin
=-2sin =-1.
答案 (1)C (2)-1
规律方法 y=Asin(ωx+φ)中φ的确定方法
(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.
(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.
【训练2】 (1)(2020·佛山模拟)某地一天6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(|φ|<π),则这段曲线的函数解析式可以为( )
A.y=10sin+20,x∈[6,14]
B.y=10sin+20,x∈[6,14]
C.y=10sin+20,x∈[6,14]
D.y=10sin+20,x∈[6,14]
(2)(2019·衡水中学一模)已知函数f(x)=-2cos ωx(ω>0)的图象向左平移φ个单位,所得的部分函数图象如图所示,则φ的值为( )
A. B. C. D.
解析 (1)令ω>0.由函数图象可知,函数的最大值M为30,最小值m为10,周期T=2×(14-6)=16,
∴A===10,b===20.
又知T=,ω>0,
∴ω==,∴y=10sin+20.
又知该函数图象经过(6,10),
∴10=10sin+20,即sin=-1,
∴φ=-+2kπ(k∈Z),
又|φ|<π,∴φ=π.
故函数的解析式为y=10sin+20,x∈[6,14].
(2)由题图知,T=2=π,
∴ω==2,∴f(x)=-2cos 2x,
∴f(x+φ)=-2cos(2x+2φ),
则由图象知,f=-2cos=2.
∴+2φ=2kπ+π(k∈Z),则φ=+kπ(k∈Z).
又0<φ<,所以φ=.
答案 (1)A (2)C
考点三 三角函数图象、性质的综合应用多维探究
角度1 图象与性质的综合问题
【例3-1】 (2020·郑州一模)已知函数f(x)=sin(ωx+θ)的图象相邻的两个对称中心之间的距离为,若将函数f(x)的图象向左平移个单位长度后得到偶函数g(x)的图象,则函数f(x)的一个单调递减区间为( )
A. B.
C. D.
解析 因为函数f(x)=sin(ωx+θ)的图象相邻的两个对称中心之间的距离为,所以=,即T=π,即=π,ω=2,得f(x)=sin(2x+θ),将f(x)的图象向左平移个单位长度后,得到g(x)=sin的图象,因为g(x)为偶函数,所以+θ=kπ+(k∈Z),解得θ=kπ+(k∈Z).又因为-≤θ≤,所以θ=,
所以f(x)=sin.
令+2kπ≤2x+≤+2kπ(k∈Z),
解得+kπ≤x≤+kπ(k∈Z).
当k=0时,得到一个单调递减区间为.
又⊆,故选B.
答案 B
角度2 三角函数的零点(方程的根)问题
【例3-2】 已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是________.
解析 方程2sin2x-sin 2x+m-1=0可转化为m=1-2sin2x+sin 2x=cos 2x+sin 2x=2sin,x∈.设2x+=t,则t∈,所以题目条件可转化为=sin t,t∈有两个不同的实数根.所以y1=和y2=sin t,t∈的图象有两个不同交点,如图:
由图象观察知,的取值范围是,故m的取值范围是(-2,-1).
答案 (-2,-1)
角度3 三角函数模型的应用
【例3-3】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到地面的距离是________米.
解析 以圆心O1为原点,以水平方向为x轴方向,以竖直方向为y轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O离地面1米,12秒转动一周,设∠OO1M=θ,运动t(秒)后与地面的距离为f(t).
又周期T=12,则ω==,
所以θ=t,
则f(t)=3-2cos t(t≥0),
当t=40 s时,f(t)=3-2cos=4.
答案 4
规律方法 1.研究y=Asin(ωx+φ)的性质时可将ωx+φ视为一个整体,利用换元法和数形结合思想进行解题.
2.方程根的个数可转化为两个函数图象的交点个数.
3.三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题.
【训练3】 (1)(角度1)(2019·天津卷)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g=,则f=( )
A.-2 B.- C. D.2
(2)(角度2)若函数f(x)=sin(ω>0)满足f(0)=f,且函数在上有且只有一个零点,则f(x)的最小正周期为________.
(3)(角度3)某城市一年中12个月的平均气温与月份的关系可近似地用函数y=a+Acos(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.
解析 (1)因为f(x)是奇函数(显然定义域为R),所以f(0)=Asin φ=0,即sin φ=0.又|φ|<π,所以φ=0.
由题意得g(x)=Asin,且g(x)最小正周期为2π,
所以ω=1,即ω=2.所以g(x)=Asin x,
所以g=Asin =A=,所以A=2.
所以f(x)=2sin 2x,所以f=.故选C.
(2)因为f(0)=f,所以x=是f(x)图象的一条对称轴,所以f=±1,所以ω+=+kπ,k∈Z,所以ω=6k+2,k∈Z,所以T=(k∈Z).又f(x)在上有且只有一个零点,所以≤≤-,所以≤T≤,所以≤≤(k∈Z),所以-≤k≤,又因为k∈Z,所以k=0,所以T=π.
(3)因为当x=6时,y=a+A=28;
当x=12时,y=a-A=18,所以a=23,A=5,
所以y=f(x)=23+5cos,
所以当x=10时,f(10)=23+5cos
=23-5×=20.5.
答案 (1)C (2)π (3)20.5
逻辑推理与数学运算——三角函数中有关ω的求解
数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.
类型1 三角函数的周期T与ω的关系
【例1】 为了使函数y=sin ωx(ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( )
A.98π B.π C.π D.100π
解析 由题意,至少出现50次最大值即至少需要49个周期,所以T=·≤1,所以ω≥π.
答案 B
思维升华 解决此类问题的关键在于结合条件弄清周期T=与所给区间的关系,从而建立不等关系.
类型2 三角函数的单调性与ω的关系
【例2】 若函数f(x)=sin ωx(ω>0)在区间上单调递减,则ω的取值范围是( )
A. B.
C. D.
解析 令+2kπ≤ωx≤+2kπ(k∈Z),得+≤x≤+,因为f(x)在上单调递减,
所以得6k+≤ω≤4k+3.
又ω>0,所以k≥0,
又6k+<4k+3,得0≤k<,所以k=0.
故≤ω≤3.
答案 D
思维升华 根据正弦函数的单调递减区间,确定函数f(x)的单调递减区间,根据函数f(x)=sin ωx(ω>0)在区间上单调递减,建立不等式,即可求ω的取值范围.
类型3 三角函数的对称性、最值与ω的关系
【例3】 (1)(2020·枣庄模拟)已知f(x)=sin ωx-cos ωx,若函数f(x)图象的任何一条对称轴与x轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)
(2)已知函数f(x)=2sin ωx在区间上的最小值为-2,则ω的取值范围是________.
解析 (1)f(x)=sin ωx-cos ωx=sin,
令ωx-=+kπ(k∈Z),解得x=+(k∈Z).
当k=0时,≤π,即≤ω,
当k=1时,+≥2π,即ω≤.
综上,≤ω≤.
(2)显然ω≠0,分两种情况:
若ω>0,当x∈时,-ω≤ωx≤ω.
因函数f(x)=2sin ωx在区间上的最小值为-2,所以-ω≤-,解得ω≥.
若ω<0,当x∈时,ω≤ωx≤-ω,
因函数f(x)=2sin ωx在区间上的最小值为-2,所以ω≤-,解得ω≤-2.
综上所述,符合条件的实数ω≤-2或ω≥.
答案 (1) (2)
思维升华 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何.
A级 基础巩固
一、选择题
1.(2019·蚌埠质检)将函数f(x)=sin x+cos x的图象上各点的纵坐标不变,横坐标缩小为原来的,再将函数图象向左平移个单位后,得到的函数g(x)的解析式为( )
A.g(x)=sin B.g(x)=sin
C.g(x)=sin D.g(x)=sin
解析 f(x)=sin x+cos x=sin的图象y=sin的图象g(x)=sin=sin.故选B.
答案 B
2.函数y=Asin(ωx+φ)的部分图象如图所示,则( )
A.y=2sin
B.y=2sin
C.y=2sin
D.y=2sin
解析 由题图可知,A=2,T=2=π,
所以ω=2,由五点作图法知2×+φ=+2kπ(k∈Z),
所以φ=-,所以函数的解析式为y=2sin.
答案 A
3.(2020·吉安检测)在平面直角坐标系xOy中,将函数f(x)=sin的图象向左平移φ(φ>0)个单位后得到的图象经过原点,则φ的最小值为( )
A. B. C. D.
解析 将函数f(x)=sin的图象向左平移φ(φ>0)个单位后得到的图象对应的解析式为y=sin,因为其图象经过原点,
所以sin=0,所以3φ+=kπ,k∈Z,解得φ=-,k∈Z,又φ>0,所以φ的最小值为-=.
答案 B
4.(2019·成都检测)已知f(x)=Asin(ωx+φ)+B的部分图象如图,则f(x)图象的一个对称中心是( )
A. B.
C. D.
解析 由题图得为f(x)图象的一个对称中心,=-,∴T=π,从而f(x)图象的对称中心为(k∈Z),当k=1时,为,选A.
答案 A
5.(2020·张家界模拟)将函数f(x)=sin 2x-cos 2x的图象向左平移t(t>0)个单位后,得到函数g(x)的图象,若g(x)=g,则实数t的最小值为( )
A. B. C. D.
解析 由题意得,f(x)=2sin,
则g(x)=2sin,
从而2sin=2sin=-2sin(2x-2t)=2sin(2x-2t+π),又t>0,
所以2t-=-2t+π+2kπ,即t=+(k∈Z),实数tmin=π.
答案 B
二、填空题
6.将函数y=sin x的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________.
解析 y=sin xy=siny=sin.
答案 y=sin
7.(2020·沈阳质检)函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则f=________.
解析 由图象可知A=2,T=-=,
∴T=π,∴ω=2.
∵当x=时,函数f(x)取得最大值,
∴2×+φ=+2kπ(k∈Z),∴φ=+2kπ(k∈Z),
又0<φ<π,∴φ=,∴f(x)=2sin,
则f=2sin=2cos =.
答案
8.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)的模型波动(x为月份),已知3月份达到最高价9千元,9月份价格最低为5千元.则7月份的出厂价格为________元.
解析 作出函数简图如图:
三角函数模型为:
y=Asin(ωx+φ)+B,
由题意知,A=2 000,
B=7 000,
T=2×(9-3)=12,
∴ω==.
将(3,9 000)看成函数图象的“第二点”,
则有×3+φ=,∴φ=0,满足|φ|<,
故f(x)=2 000sin x+7 000(1≤x≤12,x∈N*).
∴f(7)=2 000×sin +7 000=6 000.
故7月份的出厂价格为6 000元.
答案 6 000
三、解答题
9.(2019·黄冈调研)已知函数f(x)=-cos+1-2sin2x.
(1)用“五点作图法”在给定的坐标系中,画出函数f(x)在[0,π]上的图象;
(2)先将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)图象的对称中心.
解 (1)f(x)=-cos+1-2sin2x=sin 2x+cos 2x=2sin.
列表如下:
x
0
π
f(x)
1
2
0
-2
0
1
描点、连线函数f(x)在区间[0,π]上的图象如图.
(2)将函数f(x)=2sin的图象向右平移个单位后得到y=2sin=2sin的图象,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数g(x)=2sin的图象,由-=kπ(k∈Z)得x=2kπ+(k∈Z),故g(x)图象的对称中心为(k∈Z).
10.已知函数f(x)=sin(ωx+φ)的图象关于直线x=对称,且图象上相邻最高点的距离为π.
(1)求f的值;
(2)将函数y=f(x)的图象向右平移个单位后,得到y=g(x)的图象,求g(x)的单调递减区间.
解 (1)因为f(x)的图象上相邻最高点的距离为π,
所以f(x)的最小正周期T=π,从而ω==2.
又f(x)的图象关于直线x=对称,
所以2×+φ=kπ+(k∈Z),
因为-≤φ<,所以k=0,
所以φ=-=-,所以f(x)=sin,
则f=sin=sin =.
(2)将f(x)的图象向右平移个单位后,得到f的图象,
所以g(x)=f=sin=sin.
当2kπ+≤2x-≤2kπ+(k∈Z),
即kπ+≤x≤kπ+(k∈Z)时,g(x)单调递减.
因此g(x)的单调递减区间为(k∈Z).
B级 能力提升
11.(2020·合肥联考)函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin 2x的图象,只需将f(x)的图象( )
A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
解析 不妨设ω>0,由图象可知,A=1,
又知=π-=,得T=π,
又∵T=,ω>0,∴ω==2,∴f(x)=sin(2x+φ).
又知函数图象经过点,
∴f=-1,即sin=-1,
∴π+φ=2kπ+π(k∈Z),得φ=2kπ+(k∈Z).
又∵|φ|<,∴φ=,∴函数f(x)的解析式为f(x)=sin.故只需将f(x)的图象向右平移个单位长度即可得到g(x)=sin 2x的图象,因此选A.
答案 A
12.(2020·河南百校联考)将函数f(x)=sin 2x+cos 2x+1的图象向右平移个单位长度后得到函数g(x)的图象,当a∈(0,1)时,方程|g(x)|=a在区间[0,2π]上所有根的和为( )
A.6π B.8π C.10π D.12π
解析 f(x)=sin 2x+cos 2x+1=2sin+1,将其图象向右平移个单位长度后得到g(x)=2sin 2x+1的图象.画出函数y=|g(x)|的图象与直线y=a(0
答案 C
13.(一题多解)(2019·南昌测试)已知函数f(x)=sin(ωx+φ),若f=f=0,则f(π)=________.
解析 法一 因为f=f=0,所以
得(k1,k2∈Z),两式相减得,ω=k2-k1(k1,k2∈Z).因为0<ω<3,且k2-k1是整数,所以ω=2.将点看作五点中的“第一点”,则-+φ=0,所以φ=,满足|φ|<.
所以f(x)=sin,所以f(π)=.
法二 设f(x)的最小正周期为T,由f=f=0可得x=-和x=是函数f(x)的两个零点,所以k1·=π-=(k1∈N),即T=(k1∈N),又知T=(ω>0),所以=(k1∈N),所以ω=2k1(k1∈N),又0<ω<3,所以当k1=1时,ω=2.所以f(x)=sin(2x+φ).由f=0,得-+φ=k2π(k2∈Z),所以φ=k2π+(k2∈Z),又|φ|<,所以φ=,则f(x)=sin,所以f(π)=.
答案
14.已知函数f(x)=cos+2sinsin.
(1)求函数f(x)的单调递增区间;
(2)将y=f(x)的图象向左平移个单位长度,再将得到的图象横坐标变为原来的2倍(纵坐标不变),得到y=g(x)的图象.若函数y=g(x)在区间上的图象与直线y=a有三个交点,求实数a的取值范围.
解 (1)f(x)=cos+2sinsin
=cos 2x+sin 2x+(sin x-cos x)(sin x+cos x)
=cos 2x+sin 2x+sin2 x-cos2x
=cos 2x+sin 2x-cos 2x
=sin.
令2kπ-≤2x-≤2kπ+,k∈Z,
得kπ-≤x≤kπ+,k∈Z,
所以函数f(x)的单调递增区间是,k∈Z.
(2)将f(x)的图象向左平移个单位长度,得y=sin=sin=cos 2x的图象,再将得到的图象的横坐标变为原来的2倍(纵坐标不变),得g(x)=cos x的图象.
作函数g(x)=cos x在区间上的图象,及直线y=a.根据图象知,实数a的取值范围是.
C级 创新猜想
15.(新定义题)(2020·江西红色七校联考)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称,若h(x)=-asin x是g(x)关于f(x)=coscos的“对称函数”,且g(x)在上是减函数,则实数a的取值范围是________.
解析 根据“对称函数”的概念可知h(x)+g(x)=2f(x),即g(x)=2f(x)-h(x)=cos 2x+asin x=-2sin2x+asin x+1,令t=sin x(因为x∈,所以t∈),则y=-2t2+at+1,其图象的对称轴为t=,开口向下.由于g(x)在上递减,y=sin x在上递增,根据复合函数的单调性可知≤,a≤2.
答案 (-∞,2]
第5节 函数y=Asin(ωx+φ)的图象及应用
考试要求 1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
知 识 梳 理
1.函数y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
φ
2.用“五点法”画y=Asin(ωx+φ)(A>0,ω>0,|φ|<)一个周期内的简图时,要找五个关键点
x
-
-+
-
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径
[常用结论与微点提醒]
1.函数y=Asin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.
2.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.
诊 断 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)将函数y=3sin 2x的图象左移个单位长度后所得图象的解析式是y=3sin.( )
(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )
(3)函数y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( )
(4)由图象求解析式时,振幅A的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )
解析 (1)将函数y=3sin 2x的图象向左平移个单位长度后所得图象的解析式是y=3cos 2x.
(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为.故当ω≠1时平移的长度不相等.
答案 (1)× (2)× (3)√ (4)√
2.(新教材必修第一册P240T1改编)为了得到函数y=sin的图象,只需把函数y=sin 2x图象上所有的点( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
解析 因为y=sin=sin 2,所以要得到其图象,需把y=sin 2x图象上所有的点向左平移个单位长度.
答案 C
3.(老教材必修4P66T4改编)如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y=Asin(ωx+φ)+b.则这段曲线的函数解析式为________________.
解析 观察图象可知从8~14时的图象是y=Asin(ωx+φ)+b的半个周期的图象,
∴A=×(50-30)=10,b=×(50+30)=40.
∵×=14-8,∴ω=,
∴y=10sin+40.
将x=8,y=30代入上式,解得φ=.
∴所求解析式为y=10sin+40,x∈[8,14].
答案 y=10sin+40,x∈[8,14]
4.(2019·衡水中学联考)将曲线C1:y=2cos上的点向右平移个单位长度,再将各点横坐标缩短为原来的,纵坐标不变,得到曲线C2,则C2的方程为( )
A.y=2sin 4x B.y=2sin
C.y=2sin x D.y=2sin
解析 将曲线C1:y=2cos上的点向右平移个单位长度,可得y=2sin 2x的图象,再将各点横坐标缩短为原来的,纵坐标不变,可得曲线C2:y=2sin 4x,故选A.
答案 A
5.(2020·绵阳诊断改编)y=cos(x+1)图象上相邻的最高点和最低点之间的距离是________.
解析 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为.
答案
6.(2020·太原一模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图,则函数g(x)=cos(4φx+ω)的解析式为________.
解析 由题图可得A=2,=6-(-2)=8,
∴T==16,∴ω=,则f(x)=2sin.
∵函数f(x)的图象过点(6,0),且在点(6,0)附近递增,
∴+φ=2kπ,k∈Z,∴φ=-+2kπ,k∈Z.
又|φ|<π,则φ=-,故g(x)=cos.
答案 g(x)=cos
考点一 函数y=Asin(ωx+φ)的图象及变换
【例1】 某同学用“五点法”画函数f(x)=Asin(ωx+φ) 在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ
0
π
2π
x
Asin(ωx+φ)
0
5
-5
0
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.
解 (1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:
ωx+φ
0
π
2π
x
π
Asin(ωx+φ)
0
5
0
-5
0
且函数解析式为f(x)=5sin.
(2)由(1)知f(x)=5sin,
得g(x)=5sin.
因为函数y=sin x图象的对称中心为(kπ,0)(k∈Z).
令2x+2θ-=kπ,k∈Z,解得x=+-θ(k∈Z).
由于函数y=g(x)的图象关于点成中心对称,所以令+-θ=(k∈Z),解得θ=-(k∈Z).
由θ>0可知,当k=1时,θ取得最小值.
规律方法 作函数y=Asin(ωx+φ)(A>0,ω>0)的图象常用如下两种方法:
(1)五点法作图,用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;
(2)图象的变换法,由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.
【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是( )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
(2)(2020·石家庄调研)若把函数y=sin的图象向左平移个单位长度,所得到的图象与函数y=cos ωx的图象重合,则ω的一个可能取值是( )
A.2 B. C. D.
解析 (1)易知C1:y=cos x=sin,把曲线C1上的各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin的图象,再把所得函数的图象向左平移个单位长度,可得函数y=sin=sin的图象,即曲线C2,因此D项正确.
(2)y=sin和函数y=cos ωx的图象重合,可得π-=+2kπ,k∈Z,则ω=6k+2,k∈Z.
∴2是ω的一个可能值.
答案 (1)D (2)A
考点二 由图象求函数y=Asin(ωx+φ)的解析式
【例2】 (1)(一题多解)(2019·长郡中学、衡阳八中联考)函数f(x)=sin(ωx+φ)的部分图象如图所示,已知A,B,则f(x)图象的对称中心为( )
A.(k∈Z) B.(k∈Z)
C.(k∈Z) D.(k∈Z)
(2)(2020·河南六市联考)函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象如图所示,则f(2 019)的值为________.
解析 (1)法一 T=2=π=,∴ω=2,
因此f(x)=sin(2x+φ).
由五点作图法知A是“第二点”,得2×+φ=,
所以φ=-.
∴f(x)=sin.
令2x-=kπ(k∈Z),得x=+(k∈Z).
∴f(x)图象的对称中心为(k∈Z).
法二 T=2=π,由题图知,A,B的中点为f(x)图象的一个对称中心,从而f(x)图象对称中心的横坐标为+=+=+(k,m∈Z).
所以f(x)图象的对称中心为(k∈Z).
(2)由题意可知=-1=,得T=6,
又知T=,ω>0,∴ω=.∴f(x)=Asin.
又∵f(1)=A,∴Asin=A,即sin=1.
又0≤φ<2π,∴φ=.∴f(x)=Asin.
又知f(0)=1,
∴Asin =1,得A=2,∴f(x)=2sin.
∴f(2 019)=2sin=2sin
=2sin=2sin
=-2sin =-1.
答案 (1)C (2)-1
规律方法 y=Asin(ωx+φ)中φ的确定方法
(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.
(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.
【训练2】 (1)(2020·佛山模拟)某地一天6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(|φ|<π),则这段曲线的函数解析式可以为( )
A.y=10sin+20,x∈[6,14]
B.y=10sin+20,x∈[6,14]
C.y=10sin+20,x∈[6,14]
D.y=10sin+20,x∈[6,14]
(2)(2019·衡水中学一模)已知函数f(x)=-2cos ωx(ω>0)的图象向左平移φ个单位,所得的部分函数图象如图所示,则φ的值为( )
A. B. C. D.
解析 (1)令ω>0.由函数图象可知,函数的最大值M为30,最小值m为10,周期T=2×(14-6)=16,
∴A===10,b===20.
又知T=,ω>0,
∴ω==,∴y=10sin+20.
又知该函数图象经过(6,10),
∴10=10sin+20,即sin=-1,
∴φ=-+2kπ(k∈Z),
又|φ|<π,∴φ=π.
故函数的解析式为y=10sin+20,x∈[6,14].
(2)由题图知,T=2=π,
∴ω==2,∴f(x)=-2cos 2x,
∴f(x+φ)=-2cos(2x+2φ),
则由图象知,f=-2cos=2.
∴+2φ=2kπ+π(k∈Z),则φ=+kπ(k∈Z).
又0<φ<,所以φ=.
答案 (1)A (2)C
考点三 三角函数图象、性质的综合应用多维探究
角度1 图象与性质的综合问题
【例3-1】 (2020·郑州一模)已知函数f(x)=sin(ωx+θ)的图象相邻的两个对称中心之间的距离为,若将函数f(x)的图象向左平移个单位长度后得到偶函数g(x)的图象,则函数f(x)的一个单调递减区间为( )
A. B.
C. D.
解析 因为函数f(x)=sin(ωx+θ)的图象相邻的两个对称中心之间的距离为,所以=,即T=π,即=π,ω=2,得f(x)=sin(2x+θ),将f(x)的图象向左平移个单位长度后,得到g(x)=sin的图象,因为g(x)为偶函数,所以+θ=kπ+(k∈Z),解得θ=kπ+(k∈Z).又因为-≤θ≤,所以θ=,
所以f(x)=sin.
令+2kπ≤2x+≤+2kπ(k∈Z),
解得+kπ≤x≤+kπ(k∈Z).
当k=0时,得到一个单调递减区间为.
又⊆,故选B.
答案 B
角度2 三角函数的零点(方程的根)问题
【例3-2】 已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是________.
解析 方程2sin2x-sin 2x+m-1=0可转化为m=1-2sin2x+sin 2x=cos 2x+sin 2x=2sin,x∈.设2x+=t,则t∈,所以题目条件可转化为=sin t,t∈有两个不同的实数根.所以y1=和y2=sin t,t∈的图象有两个不同交点,如图:
由图象观察知,的取值范围是,故m的取值范围是(-2,-1).
答案 (-2,-1)
角度3 三角函数模型的应用
【例3-3】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到地面的距离是________米.
解析 以圆心O1为原点,以水平方向为x轴方向,以竖直方向为y轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O离地面1米,12秒转动一周,设∠OO1M=θ,运动t(秒)后与地面的距离为f(t).
又周期T=12,则ω==,
所以θ=t,
则f(t)=3-2cos t(t≥0),
当t=40 s时,f(t)=3-2cos=4.
答案 4
规律方法 1.研究y=Asin(ωx+φ)的性质时可将ωx+φ视为一个整体,利用换元法和数形结合思想进行解题.
2.方程根的个数可转化为两个函数图象的交点个数.
3.三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题.
【训练3】 (1)(角度1)(2019·天津卷)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g=,则f=( )
A.-2 B.- C. D.2
(2)(角度2)若函数f(x)=sin(ω>0)满足f(0)=f,且函数在上有且只有一个零点,则f(x)的最小正周期为________.
(3)(角度3)某城市一年中12个月的平均气温与月份的关系可近似地用函数y=a+Acos(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.
解析 (1)因为f(x)是奇函数(显然定义域为R),所以f(0)=Asin φ=0,即sin φ=0.又|φ|<π,所以φ=0.
由题意得g(x)=Asin,且g(x)最小正周期为2π,
所以ω=1,即ω=2.所以g(x)=Asin x,
所以g=Asin =A=,所以A=2.
所以f(x)=2sin 2x,所以f=.故选C.
(2)因为f(0)=f,所以x=是f(x)图象的一条对称轴,所以f=±1,所以ω+=+kπ,k∈Z,所以ω=6k+2,k∈Z,所以T=(k∈Z).又f(x)在上有且只有一个零点,所以≤≤-,所以≤T≤,所以≤≤(k∈Z),所以-≤k≤,又因为k∈Z,所以k=0,所以T=π.
(3)因为当x=6时,y=a+A=28;
当x=12时,y=a-A=18,所以a=23,A=5,
所以y=f(x)=23+5cos,
所以当x=10时,f(10)=23+5cos
=23-5×=20.5.
答案 (1)C (2)π (3)20.5
逻辑推理与数学运算——三角函数中有关ω的求解
数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.
类型1 三角函数的周期T与ω的关系
【例1】 为了使函数y=sin ωx(ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( )
A.98π B.π C.π D.100π
解析 由题意,至少出现50次最大值即至少需要49个周期,所以T=·≤1,所以ω≥π.
答案 B
思维升华 解决此类问题的关键在于结合条件弄清周期T=与所给区间的关系,从而建立不等关系.
类型2 三角函数的单调性与ω的关系
【例2】 若函数f(x)=sin ωx(ω>0)在区间上单调递减,则ω的取值范围是( )
A. B.
C. D.
解析 令+2kπ≤ωx≤+2kπ(k∈Z),得+≤x≤+,因为f(x)在上单调递减,
所以得6k+≤ω≤4k+3.
又ω>0,所以k≥0,
又6k+<4k+3,得0≤k<,所以k=0.
故≤ω≤3.
答案 D
思维升华 根据正弦函数的单调递减区间,确定函数f(x)的单调递减区间,根据函数f(x)=sin ωx(ω>0)在区间上单调递减,建立不等式,即可求ω的取值范围.
类型3 三角函数的对称性、最值与ω的关系
【例3】 (1)(2020·枣庄模拟)已知f(x)=sin ωx-cos ωx,若函数f(x)图象的任何一条对称轴与x轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)
(2)已知函数f(x)=2sin ωx在区间上的最小值为-2,则ω的取值范围是________.
解析 (1)f(x)=sin ωx-cos ωx=sin,
令ωx-=+kπ(k∈Z),解得x=+(k∈Z).
当k=0时,≤π,即≤ω,
当k=1时,+≥2π,即ω≤.
综上,≤ω≤.
(2)显然ω≠0,分两种情况:
若ω>0,当x∈时,-ω≤ωx≤ω.
因函数f(x)=2sin ωx在区间上的最小值为-2,所以-ω≤-,解得ω≥.
若ω<0,当x∈时,ω≤ωx≤-ω,
因函数f(x)=2sin ωx在区间上的最小值为-2,所以ω≤-,解得ω≤-2.
综上所述,符合条件的实数ω≤-2或ω≥.
答案 (1) (2)
思维升华 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何.
A级 基础巩固
一、选择题
1.(2019·蚌埠质检)将函数f(x)=sin x+cos x的图象上各点的纵坐标不变,横坐标缩小为原来的,再将函数图象向左平移个单位后,得到的函数g(x)的解析式为( )
A.g(x)=sin B.g(x)=sin
C.g(x)=sin D.g(x)=sin
解析 f(x)=sin x+cos x=sin的图象y=sin的图象g(x)=sin=sin.故选B.
答案 B
2.函数y=Asin(ωx+φ)的部分图象如图所示,则( )
A.y=2sin
B.y=2sin
C.y=2sin
D.y=2sin
解析 由题图可知,A=2,T=2=π,
所以ω=2,由五点作图法知2×+φ=+2kπ(k∈Z),
所以φ=-,所以函数的解析式为y=2sin.
答案 A
3.(2020·吉安检测)在平面直角坐标系xOy中,将函数f(x)=sin的图象向左平移φ(φ>0)个单位后得到的图象经过原点,则φ的最小值为( )
A. B. C. D.
解析 将函数f(x)=sin的图象向左平移φ(φ>0)个单位后得到的图象对应的解析式为y=sin,因为其图象经过原点,
所以sin=0,所以3φ+=kπ,k∈Z,解得φ=-,k∈Z,又φ>0,所以φ的最小值为-=.
答案 B
4.(2019·成都检测)已知f(x)=Asin(ωx+φ)+B的部分图象如图,则f(x)图象的一个对称中心是( )
A. B.
C. D.
解析 由题图得为f(x)图象的一个对称中心,=-,∴T=π,从而f(x)图象的对称中心为(k∈Z),当k=1时,为,选A.
答案 A
5.(2020·张家界模拟)将函数f(x)=sin 2x-cos 2x的图象向左平移t(t>0)个单位后,得到函数g(x)的图象,若g(x)=g,则实数t的最小值为( )
A. B. C. D.
解析 由题意得,f(x)=2sin,
则g(x)=2sin,
从而2sin=2sin=-2sin(2x-2t)=2sin(2x-2t+π),又t>0,
所以2t-=-2t+π+2kπ,即t=+(k∈Z),实数tmin=π.
答案 B
二、填空题
6.将函数y=sin x的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________.
解析 y=sin xy=siny=sin.
答案 y=sin
7.(2020·沈阳质检)函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则f=________.
解析 由图象可知A=2,T=-=,
∴T=π,∴ω=2.
∵当x=时,函数f(x)取得最大值,
∴2×+φ=+2kπ(k∈Z),∴φ=+2kπ(k∈Z),
又0<φ<π,∴φ=,∴f(x)=2sin,
则f=2sin=2cos =.
答案
8.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)的模型波动(x为月份),已知3月份达到最高价9千元,9月份价格最低为5千元.则7月份的出厂价格为________元.
解析 作出函数简图如图:
三角函数模型为:
y=Asin(ωx+φ)+B,
由题意知,A=2 000,
B=7 000,
T=2×(9-3)=12,
∴ω==.
将(3,9 000)看成函数图象的“第二点”,
则有×3+φ=,∴φ=0,满足|φ|<,
故f(x)=2 000sin x+7 000(1≤x≤12,x∈N*).
∴f(7)=2 000×sin +7 000=6 000.
故7月份的出厂价格为6 000元.
答案 6 000
三、解答题
9.(2019·黄冈调研)已知函数f(x)=-cos+1-2sin2x.
(1)用“五点作图法”在给定的坐标系中,画出函数f(x)在[0,π]上的图象;
(2)先将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)图象的对称中心.
解 (1)f(x)=-cos+1-2sin2x=sin 2x+cos 2x=2sin.
列表如下:
x
0
π
f(x)
1
2
0
-2
0
1
描点、连线函数f(x)在区间[0,π]上的图象如图.
(2)将函数f(x)=2sin的图象向右平移个单位后得到y=2sin=2sin的图象,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数g(x)=2sin的图象,由-=kπ(k∈Z)得x=2kπ+(k∈Z),故g(x)图象的对称中心为(k∈Z).
10.已知函数f(x)=sin(ωx+φ)的图象关于直线x=对称,且图象上相邻最高点的距离为π.
(1)求f的值;
(2)将函数y=f(x)的图象向右平移个单位后,得到y=g(x)的图象,求g(x)的单调递减区间.
解 (1)因为f(x)的图象上相邻最高点的距离为π,
所以f(x)的最小正周期T=π,从而ω==2.
又f(x)的图象关于直线x=对称,
所以2×+φ=kπ+(k∈Z),
因为-≤φ<,所以k=0,
所以φ=-=-,所以f(x)=sin,
则f=sin=sin =.
(2)将f(x)的图象向右平移个单位后,得到f的图象,
所以g(x)=f=sin=sin.
当2kπ+≤2x-≤2kπ+(k∈Z),
即kπ+≤x≤kπ+(k∈Z)时,g(x)单调递减.
因此g(x)的单调递减区间为(k∈Z).
B级 能力提升
11.(2020·合肥联考)函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin 2x的图象,只需将f(x)的图象( )
A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
解析 不妨设ω>0,由图象可知,A=1,
又知=π-=,得T=π,
又∵T=,ω>0,∴ω==2,∴f(x)=sin(2x+φ).
又知函数图象经过点,
∴f=-1,即sin=-1,
∴π+φ=2kπ+π(k∈Z),得φ=2kπ+(k∈Z).
又∵|φ|<,∴φ=,∴函数f(x)的解析式为f(x)=sin.故只需将f(x)的图象向右平移个单位长度即可得到g(x)=sin 2x的图象,因此选A.
答案 A
12.(2020·河南百校联考)将函数f(x)=sin 2x+cos 2x+1的图象向右平移个单位长度后得到函数g(x)的图象,当a∈(0,1)时,方程|g(x)|=a在区间[0,2π]上所有根的和为( )
A.6π B.8π C.10π D.12π
解析 f(x)=sin 2x+cos 2x+1=2sin+1,将其图象向右平移个单位长度后得到g(x)=2sin 2x+1的图象.画出函数y=|g(x)|的图象与直线y=a(0
答案 C
13.(一题多解)(2019·南昌测试)已知函数f(x)=sin(ωx+φ),若f=f=0,则f(π)=________.
解析 法一 因为f=f=0,所以
得(k1,k2∈Z),两式相减得,ω=k2-k1(k1,k2∈Z).因为0<ω<3,且k2-k1是整数,所以ω=2.将点看作五点中的“第一点”,则-+φ=0,所以φ=,满足|φ|<.
所以f(x)=sin,所以f(π)=.
法二 设f(x)的最小正周期为T,由f=f=0可得x=-和x=是函数f(x)的两个零点,所以k1·=π-=(k1∈N),即T=(k1∈N),又知T=(ω>0),所以=(k1∈N),所以ω=2k1(k1∈N),又0<ω<3,所以当k1=1时,ω=2.所以f(x)=sin(2x+φ).由f=0,得-+φ=k2π(k2∈Z),所以φ=k2π+(k2∈Z),又|φ|<,所以φ=,则f(x)=sin,所以f(π)=.
答案
14.已知函数f(x)=cos+2sinsin.
(1)求函数f(x)的单调递增区间;
(2)将y=f(x)的图象向左平移个单位长度,再将得到的图象横坐标变为原来的2倍(纵坐标不变),得到y=g(x)的图象.若函数y=g(x)在区间上的图象与直线y=a有三个交点,求实数a的取值范围.
解 (1)f(x)=cos+2sinsin
=cos 2x+sin 2x+(sin x-cos x)(sin x+cos x)
=cos 2x+sin 2x+sin2 x-cos2x
=cos 2x+sin 2x-cos 2x
=sin.
令2kπ-≤2x-≤2kπ+,k∈Z,
得kπ-≤x≤kπ+,k∈Z,
所以函数f(x)的单调递增区间是,k∈Z.
(2)将f(x)的图象向左平移个单位长度,得y=sin=sin=cos 2x的图象,再将得到的图象的横坐标变为原来的2倍(纵坐标不变),得g(x)=cos x的图象.
作函数g(x)=cos x在区间上的图象,及直线y=a.根据图象知,实数a的取值范围是.
C级 创新猜想
15.(新定义题)(2020·江西红色七校联考)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称,若h(x)=-asin x是g(x)关于f(x)=coscos的“对称函数”,且g(x)在上是减函数,则实数a的取值范围是________.
解析 根据“对称函数”的概念可知h(x)+g(x)=2f(x),即g(x)=2f(x)-h(x)=cos 2x+asin x=-2sin2x+asin x+1,令t=sin x(因为x∈,所以t∈),则y=-2t2+at+1,其图象的对称轴为t=,开口向下.由于g(x)在上递减,y=sin x在上递增,根据复合函数的单调性可知≤,a≤2.
答案 (-∞,2]
相关资料
更多