2020年浙教版八年级数学上册 期中复习试卷六(含答案)
展开2020年浙教版八年级数学上册 期中复习试卷六
一、仔细选一选(本题有12个小题,每小题4分,共48分)
1.下列四组线段中,能组成三角形的是( )
A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm
2.下列图案是轴对称图形的是( )
A. B. C. D.
3.下列各式计算正确的是( )
A. B. C. D.
4.若x>y,则下列式子中错误的是( )
A.x﹣3>y﹣3 B.> C.x+3>y+3 D.﹣3x>﹣3y
5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为( )
A.(3,2) B.(2,﹣3) C.(﹣2,3) D.(﹣2,﹣3)
6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )
A.∠1=50°,∠2=40° B.∠1=50°,∠2=50°
C.∠1=∠2=45° D.∠1=40°,∠2=40°
7.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,则a与b的大小关系是( )
A.a≤b B.a<b C.a≥b D.a>b
8.直角三角形的两条边长分别是5和12,则斜边上的中线长是( )
A.6 B.6.5 C.6或 6.5 D.6或 2.5
9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为( )
A.x<﹣1 B.x<3 C.x>﹣1 D.x>3
10.关于x的不等式组有四个整数解,则a的取值范围是( )
A.﹣<a≤﹣ B.﹣≤a<﹣ C.﹣≤a≤﹣ D.﹣<a<﹣
11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有( )
A.①②③ B.①②③⑤ C.②③④ D.③④⑤
12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为( )
A. B. C. D.
二、认真填一填(本题有6个小题,每小题4分,共24分)
13.若代数式有意义,则a的取值范围为 .
14.命题“等腰三角形的两个底角相等”的逆命题是 .
15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为 .
16.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为 .
17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x》,即当n为非负整数时,若n﹣≤x<n+,则《x》=n.例如:《0.67》=1,《2.49》=2,….给出下列关于《x》的问题:①《》=2;②《2x》=2《x》;③当m为非负整数时,《m+2x》=m+《2x》;④若《2x﹣1》=5,则实数x的取值范围是≤x<;⑤满足《x》=x的非负实数x有三个.其中正确结论的个数是 个.
18.如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1B2、B1A2、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则S2016= .
三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)
19.计算或化简:
(1)(2﹣3)2+(2+)(2﹣) (2)﹣+(﹣2)0+.
20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.
21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).
22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.
求证:(1)△AEF≌△CEB;
(2)AF=2CD.
23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:
| 成本价(万元/辆) | 售价(万元/辆) |
A型 | 30 | 32 |
B型 | 42 | 45 |
(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?
(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?
(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.
24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.
(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;
(2)A,B的“5和点”有几个,请分别求出坐标;
(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.
25.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.
方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.
请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式;
(2)当20<y<30时,求t的取值范围;
(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;
(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?
26.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.
(1)求点P坐标和b的值;
(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.
①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;
②求出t为多少时,△APQ的面积小于3;
③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.
参考答案
1.A.
2.D.
3.C.
4.D.
5.B.
6.C.
7.D.
8.C.
9.A.
10.B.
11.B.
12.A.
13.答案为:a≥2016.
14.解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,
所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.
15.答案为:4.
16.答案为:.
17.答案为:2.
18.答案为:.
19.解:(1)原式=12﹣12+18+4﹣3=31﹣12;
(2)原式=2﹣+1+﹣1=.
20.解:,
由①得:x≥﹣1,由②得:x<3,
不等式组的解集为:﹣1≤x<3.
在数轴上表示为:.
不等式组的非负整数解为2,1,0.
21.解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).
(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.
如答图的△ABC即为满足条件的三角形.
22.解:
(1)证明:∵AD⊥BC,
∴∠B+∠BAD=90°.
∵CE⊥AB,
∴∠B+∠BCE=90°.
∴∠EAF=∠ECB,
在△AEF和△CEB中,
,
∴△AEF≌△CEB;
(2)∵△AEF≌△CEB.
∴AF=BC.
∵AB=AC,AD⊥BC.
∴CD=BD,BC=2CD
∴AF=2CD.
23.解:(1)设A型汽车购进x辆,则B型汽车购进(16﹣x)辆.
根据题意得:,解得:6≤x≤8.
∵x为整数,∴x取6、7、8.∴有三种购进方案:
A型 | 6辆 | 7辆 | 8辆 |
B型 | 10辆 | 9辆 | 8辆 |
(2)设总利润为w万元.
根据题意得:W=(32﹣30)x+(45﹣42)(16﹣x)
W=﹣x+48.
∵k=﹣1<0,
∴w随x的增大而减小,
∴当x=6时,w有最大值,W最大=﹣6+48=42(万元)
∴当购进A型车6辆,B型车10辆时,可获得最大利润,最大利润是42万元.
(3)设电动汽车行驶的里程为a万公里.
当32+0.65a=45时,解得:a=20<30.
∴选购太阳能汽车比较合算.
24.解:(1)∵A(﹣2,0),B(2,0),
∴AB=2﹣(﹣2)=4.
∵△ABC为等边三角形,
∴AC=BC=AB=4,
∴AC+BC=4+4=8,即m=8;
(2)设点C为点A,B的“5和点”.分两种情况:
①如果点C在x轴上,设C点坐标为(x,0).
∵AC+BC=5,
∴|x+2|+|x﹣2|=5,
当x≤﹣2时,﹣(x+2)﹣(x﹣2)=5,解得x=﹣2.5,所以C点坐标为(﹣2.5,0);
当﹣2<x≤2时,(x+2)﹣(x﹣2)=5,x无解;
当x>2时,(x+2)+(x﹣2)=5,解得x=2.5,所以C点坐标为(2.5,0);
②如果点C在y轴上,设C点坐标为(0,y).
∵AC+BC=5,∴+=5,∴=2.5,
两边平方,得4+y2=6.25,解得y=±1.5.
经经验,y=±1.5都是原方程的根,所以C点坐标为(0,1.5),(0,﹣1.5);
综上所述,A,B的“5和点”有4个,坐标为(﹣2.5,0),(2.5,0),(0,1.5),(0,﹣1.5);
(3)∵AB=4,
∴点A,B的“m和点”的个数情况分三种情况:
①当m<4时,A,B的“m和点”没有;
②当m=4时,A,B的“m和点”有无数个;
③当m>4时,A,B的“m和点”有4个.
25.解:(1)直线BC的函数解析式为y=kt+b,
把(1.5,0),()代入得:解得:,
∴直线BC的解析式为:y=40t﹣60;
设直线CD的函数解析式为y1=k1t+b1,
把(),(4,0)代入得:,解得:,
∴直线CD的函数解析式为:y=﹣20t+80.
(2)设甲的速度为akm/h,乙的速度为bkm/h,根据题意得;
,解得:,
∴甲的速度为60km/h,乙的速度为20km/h,
∴OA的函数解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20,
当20<y<30时,
即20<40t﹣60<30,或20<﹣20t+80<30,解得:或.
(3)根据题意得:S甲=60t﹣60()S乙=20t(0≤t≤4),
所画图象如图2所示:
(4)当t=时,,丙距M地的路程S丙与时间t的函数表达式为:
S丙=﹣40t+80(0≤t≤2),
如图3,
S丙=﹣40t+80与S甲=60t﹣60的图象交点的横坐标为,所以丙出发h与甲相遇.
26.解;(1)∵点P(m,3)为直线l1上一点,
∴3=﹣m+2,解得m=﹣1,
∴点P的坐标为(﹣1,3),
把点P的坐标代入y2=x+b得,3=×(﹣1)+b,解得b=;
(2)∵b=,∴直线l2的解析式为y=x+,∴C点的坐标为(﹣7,0),
①由直线l1:y1=﹣x+2可知A(2,0),
∴当Q在A、C之间时,AQ=2+7﹣t=9﹣t,
∴S=AQ•|yP|=×(9﹣t)×3=﹣t;
当Q在A的右边时,AQ=t﹣9,
∴S=AQ•|yP|=×(t﹣9)×3=t﹣;
即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;
②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.
③存在;设Q(t﹣7,0),
当PQ=PA时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2
∴(t﹣6)2=32,解得t=3或t=9(舍去),
当AQ=PA时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2
∴(t﹣9)2=18,解得t=9+3或t=9﹣3;
当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,
∴(t﹣6)2+9=(t﹣9)2,解得t=6.
故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.