所属成套资源:青岛版(2024)七年级数学上册同步教学课件
青岛版(2024)七年级上册(2024)余角和补角示范课课件ppt
展开
这是一份青岛版(2024)七年级上册(2024)余角和补角示范课课件ppt,共23页。PPT课件主要包含了习题66,▶复习巩固,▶拓展延伸,不正确,▶探索创新等内容,欢迎下载使用。
本节我们将研究具有特殊数量关系的两个角。
观察图 6.6-1 中的一副三角板,每块三角板中两个锐角的和是多少?
一块三角板的两个锐角分别是 30°和 60°,另一块的两个锐角都是 45°。每块三角板中两个锐角的和都是 90°。
一般而言,如果两个角的和为 90°,就说这两个角互为余角,简称互余,其中一个角叫作另一个角的余角。
类似地,如果两全角的和为 180°. 就说这两个角互为补角,简称互补,其中一个角叫作另一个角的补角。
(1) 如图 6.6-3,∠AOC=∠BOD=90°,指出图中互余的角。图中除直角外还有相等的角吗?
(2) 如果∠1=∠2,∠1与∠3互余,∠2与∠4互余,那么∠3与∠4有什么关系? 为什么?
由此,我们得到余角的性质。补角也有类似的性质。
同角或等角的余角相等;同角或等角的补角相等。
解:设这个角是x°,那么它的补角是(180-x)°,余角是(90-x)°。由题意,得180-x =3(90-x)。解方程,得x=45。所以,这个角是 45°
1. 求下列各角的余角和补角: (1) 15°; (2) 53°; (3) 46°30′。
解:(1) 余角:75°,补角:165°.(2) 余角:37°,补角:127°.(3) 余角:43°30′,补角:133°30′.
2. 判断下列说法的正误:(1) 两个锐角能互补;(2) 两个钝角能互补;(3) 如果两个角互补,其中一定有一个角是钝角,另一个角是锐角。
3. 如图,O 是直线 AB 上的一点,∠AOC=∠DOE=90°。指出图中与 ∠BOE 互余的角、互补的角和相等的角。
解:与 ∠BOE 互余的角:∠COE,∠AOD.与∠BOE 互补的角:∠AOE.与∠BOE 相等的角:∠COD.
1. 如图,O是直线 AB 上一点,∠EOC=36°20′。求∠AOC 的度数。
解:∠AOC=180°-∠BOC =180°-36°20′ =143°40′. 所以 ∠AOC 的度数为 143°40′.
2. 一个角的补角是它的余角的 6 倍,求这个角的度数。
解:设这个角是 x°,那么它的补角是 (180-x)°,余角是 (90-x)°.由题意,得 180-x=6(90-x).解方程,得 x=72.所以,这个角是 72°.
3. 如图,∠AOC=∠BOD=90°,判断∠AOB 和∠COD 的数量关系,并说明理由。
解:∠AOB+∠COD=180°.理由如下:因为∠AOC=∠BOD=90°,所以∠AOC+∠BOD=180°因为∠BOD=∠BOC+∠COD,所以∠AOC+∠BOC+∠COD=180°所以∠AOB+∠COD=180°
4. 判断下列说法的正误,并说明理由。(1) 互余且相等的两个角均为45°;(2) 一个角的余角一定小于这个角的补角;(3) 如果∠1+∠2=∠3,那么∠1的余角与∠2的余角的和等于∠3 的余角;(4) 如果∠1+∠2=∠3,那么∠1的余角与∠2的余角的和等于∠3 的补角。
5. 如图,OE 平分∠AOD,OC 平分∠BOD,∠AOD=90°,∠COE=70°。求 ∠BOD 的度数。
6. 时钟上,在3时到4时之间,什么时刻时针和分针成 90°的角?请画图表示出来。
相关课件
这是一份初中数学余角和补角教课ppt课件,共22页。PPT课件主要包含了6余角和补角,余角和补角的概念,结论同角的余角相等,余角和补角的性质,探究二余角的性质,∠2∠4,探究三补角的性质,探究四补角的性质,∠2=∠4等内容,欢迎下载使用。
这是一份青岛版(2024)七年级上册(2024)6.6 余角和补角教课内容课件ppt,共27页。
这是一份数学七年级上册(2024)6.3 角教学ppt课件,共18页。PPT课件主要包含了学习目标,新课引入,互余的概念,探究点1,获取新知,互补的概念,探究点2,跟踪训练,互余的性质,探究点3等内容,欢迎下载使用。
相关课件 更多
- 1.电子资料成功下载后不支持退换,如发现资料有内容错误问题请联系客服,如若属实,我们会补偿您的损失
- 2.压缩包下载后请先用软件解压,再使用对应软件打开;软件版本较低时请及时更新
- 3.资料下载成功后可在60天以内免费重复下载
免费领取教师福利

