数学19.3 正方形教课课件ppt
展开
这是一份数学19.3 正方形教课课件ppt,共19页。PPT课件主要包含了正方形,一组邻边相等,对角线互相垂直,一个角是直角,对角线相等,先判定菱形,先判定矩形,矩形条件二选一,菱形条件二选一,一个直角等内容,欢迎下载使用。
1.探索并证明正方形的判定;(重、难点)2.会运用正方形的性质及判定条件进行有关的论证和计算 . (难点)
知识点 正方形的判定
活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.
猜想 满足怎样条件的矩形是正方形?
已知:如图,在矩形ABCD中,AC , DB是它的两条对角线, AC⊥DB.求证:四边形ABCD是正方形.证明:∵四边形ABCD是矩形, ∴AO=CO=BO=DO . ∵AC⊥DB, ∴AC与BD互相垂直平分, ∴AD=AB=BC=CD, ∴矩形ABCD是正方形.
证一证:对角线互相垂直的矩形是正方形.
活动2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看是不是正方形.
猜想 满足怎样条件的菱形是正方形?
已知:如图,在菱形ABCD中,AC , DB是它的两条对角线, AC=DB.求证:四边形ABCD是正方形.证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥DB.∵AC=DB,∴ AO=BO=CO=DO,∴△AOD,△AOB,△COD,△BOC是等腰直角三角形,∴∠DAB=∠ABC=∠BCD=∠ADC=90°,∴菱形ABCD是正方形.
证一证:对角线相等的菱形是正方形.
正方形判定的几条途径:
在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC
例1 在正方形ABCD中,点E、F、M、N分别在各边上,且AE=BF=CM=DN.四边形EFMN是正方形吗?为什么?
解:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.∵AE=BF=CM=DN,∴AN=BE=CF=DM.
分析:由已知可证△AEN≌△BFE≌△CMF≌△DNM,得四边形EFMN是菱形,再证有一个角是直角即可.
在△AEN、△BFE、△CMF、△DNM中, AE=BF=CM=DN, ∠A=∠B=∠C=∠D, AN=BE=CF=DM,∴△AEN≌△BFE≌△CMF≌△DNM,∴EN=FE=MF=NM,∠ANE=∠BEF,∴四边形EFMN是菱形,∠NEF=180°-(∠AEN+∠BEF) =180°-(∠AEN+∠ANE)=180°-90°=90°.∴四边形EFMN是正方形 .
证明:∵ DE⊥AC,DF⊥AB ,∴∠DEC= ∠DFC=90°.又∵ ∠C=90 °,∴四边形EDFC是矩形.过点D作DG⊥AB,垂足为G.∵AD是∠CAB的平分线DE⊥AC,DG⊥AB,∴ DE=DG.同理得DG=DF,∴ED=DF,∴矩形EDFC是正方形.
例2 如图,在直角三角形中,∠C=90°,∠A、∠B的平分线交于点D.DE⊥AC,DF⊥AB.求证:四边形CEDF为正方形.
证明:∵四边形ABCD为正方形,∴OB=OC,∠ABO=∠BCO =45°,∠BOC=90°=∠COH+∠BOH.∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO ≌△BEO,∴OE=OH.同理可证:OE=OF=OG,
例3 如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH.求证:四边形EFGH是正方形.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO ,即EG=HF,∴菱形EFGH为正方形.
2.一个正方形的对角线长为2cm,则它的面积是( ) A.2cm2 B.4cm2 C.6cm2 D.8cm2
1.平行四边形、矩形、菱形、正方形都具有的是( ) A.对角线互相平分 B.对角线互相垂直 C.对角线相等 D.对角线互相垂直且相等
3.如图,四边形ABCD中,∠ABC=∠BCD=∠CDA=90°,请添加一个条件____________________,可得出该四边形是正方形.
AB=BC(答案不唯一)
4.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,其中错误的是_________________(只填写序号).
5.如图,在矩形ABCD中,BE平分∠ABC ,CE平分∠DCB,BF∥CE, CF∥BE.求证:四边形BECF是正方形.
证明: ∵ BF∥CE,CF∥BE,∴四边形BECF是平行四边形.∵四边形ABCD是矩形,∴ ∠ABC = 90°, ∠DCB = 90°, ∵BE平分∠ABC, CE平分∠ DCB,∴∠EBC = 45°, ∠ECB = 45°,∴ ∠ EBC =∠ ECB .∴ EB=EC,∴□ BECF是菱形 .
在△EBC中∵∠EBC=45°,∠ECB=45°,∴∠BEC = 90°,∴菱形BECF是正方形.
6.如图,在四边形ABCD中, AB=BC ,对角线BD平分ABC , P是BD上一点,过点P作PMAD , PNCD ,垂足分别为M、N. (1) 求证:ADB=CDB; (2) 若ADC=90,求证:四边形MPND是正方形.
证明:(1)∵AB = BC,BD平分∠ABC.∴∠1=∠2.∵BD=BD∴△ABD≌△CBD (SAS).∴∠ADB=∠CDB.
(2)∵∠ADC=90°; 又∵PM⊥AD,PN⊥CD; ∴∠PMD=∠PND=90°. ∴四边形NPMD是矩形. ∴PM∥ND,PN∥MD. ∵∠ADB=∠CDB; ∴∠ADB=∠CDB=45°. ∴∠MPD=∠NPD=45°. ∴DM=PM,DN=PN. ∴矩形NPMD是正方形.
相关课件
这是一份初中数学华东师大版(2024)八年级下册19.3 正方形教学演示课件ppt,共19页。PPT课件主要包含了你能证明这些结论吗,正方形,平行四边形,连接PCAC,∴PCEF,∴APPC,∴APEF,第3题图,第4题图等内容,欢迎下载使用。
这是一份初中数学沪科版八年级下册第19章 四边形19.3 矩形 菱形 正方形教课ppt课件,共1页。
这是一份华师大版八年级下册19.3 正方形作业课件ppt,共24页。