搜索
    上传资料 赚现金
    英语朗读宝

    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT

    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第1页
    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第2页
    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第3页
    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第4页
    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第5页
    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第6页
    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第7页
    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT第8页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT

    展开

    这是一份北师大版(2019)数学-必修第二册-同步课件第一章 三角函数-§2 任意角PPT,共21页。
    §2 任意角 当钟表慢了或快了时,我们会将分针按某个方向转动,把时间调整准确.在调整的过程中,你能分析出分针转动的角度有什么不同吗?在体操或跳水比赛中,运动员会做出“转体两周”“向前翻腾两周半”等动作,做上述动作时,你知道运动员转体多少度吗? 在齿轮转动中,被动轮与主动轮是按相反方向旋转的. 一般地,一条射线绕其端点旋转,既可以按逆时针方向旋转,也可以按顺时针方向旋转.你认为将一条射线绕其端点按逆时针方向旋转60°所形成的角,与按顺时针方向旋转60°所形成的角是否相等?提示:不相等60°60°1.了解任意角的概念,理解象限角的概念.2.掌握终边相同的角的含义及其表示.1.通过对任意角与象限角的概念的学习,培养数学抽象素养.2.借助终边相同的角的表示,培养数学运算素养.课标要求素养要求 如图在生活中,拧紧螺丝时,需要将扳手顺时针方向旋转;拧松螺丝时,需要将扳手逆时针方向旋转.可以旋转一圈,也可以旋转多圈.为了描述这种现象,需要对角的概念进行推广.探究点1 角的概念推广1、角的概念 平面内一条射线OA绕着它的端点O按箭头所示方向旋转的终止位置OB形成角α,其中点O是角α的顶点.射线OA是角α的始边,射线OB是角α的终边.2、任意角 在数学上规定,按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角. 这样零角的始边与终边重合,如果α是零角,那么α=0°.3、识别图中的角提示:图1-5中的角是750°的正角;图1-6中的正角α=210°,负角β=-150°,负角γ=-660°. 将角放在一个平面直角坐标系中,角的顶点在坐标原点,始边在x轴的非负半轴,以角的终边(除端点外)在平面直角坐标系的位置对角分类: 角的终边在第几象限就说这个角是第几象限角; 注意:如果角的终边在坐标轴上,这个角就不属于任何象限.探究点2 象限角的概念 说出图中的角是第几项象限角?提示:图1-7中,30°,390°和-690°角都是第一象限角;图1-8中,300°和-60°角都是第四象限角;图1-9中,585°角是第三象限角.探究点3 终边相同的角思考:图1-7中,30°,390°和-690°三个角有什么关系?提示:390°和-690°的角与30°的角终边相同.且390°=30°+360°-690°=30°+(-2)×360°都是30°+k×360°的形式,k∈Z 设集合S={β|β=30°+k×360°,k∈Z}.容易看出,所有与30°角终边相同的角,连同30°角在内都是集合S中的元素;反之,集合S中的任一元素的终边显然与30°角终边相同. 一般地,给定一个角α,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z}, 即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.终边相同的角例1 判定下列各角是第几象限的角:(1)-60°;(2)945°;(3)-950°12′.解 (1)因为-60°角的终边在第四象限,所以它是第四象限角;(2)因为945°=225°+2×360°,所以945°与225°角终边相同,而225°角的终边在第三象限角,所以945°角是第三象限角;(3)因为-950°12′=129°48′+(-3)×360°,而129°48′角的终边在第二象限角,所以-950°12′角是第二象限角.例2 写出终边在平面直角坐标系y轴上的角的集合.解 在0°~360°范围内,终边在y轴上的角有两个,即90°,270°角(如图).因此,所有与90°角终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z},而所有与270°角终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z},于是,终边在y轴上的角的集合S=S1∪S2={β|β=90°+2k·180°,k∈Z} ∪{β|β=90°+180°+2k·180°,k∈Z}={β|β=90°+2k·180°,k∈Z} ∪{β|β=90°+(2k+1)180°,k∈Z}={β|β=90°+k·180°,k∈Z}.解 S={β|β=60°+k·360°,k∈Z}.S中适合-360°≤β

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map