年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(原卷版) .doc
    • 解析
      人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(解析版) .doc
    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(原卷版) 第1页
    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(原卷版) 第2页
    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(原卷版) 第3页
    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(解析版) 第1页
    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(解析版) 第2页
    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(解析版) 第3页
    还剩5页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(2份,原卷版+解析版)

    展开

    这是一份人教版数学九年级下册考点提分练习专题13 一线三等角模型证相似(2份,原卷版+解析版),文件包含人教版数学九年级下册考点提分练习专题13一线三等角模型证相似原卷版doc、人教版数学九年级下册考点提分练习专题13一线三等角模型证相似解析版doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
    专题13 一线三等角模型证相似1.如图,在边长为 SKIPIF 1 < 0 的等边 SKIPIF 1 < 0 中, SKIPIF 1 < 0 为 SKIPIF 1 < 0 上一点,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 在 SKIPIF 1 < 0 上, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的长为 SKIPIF 1 < 0    SKIPIF 1 < 0 .A. SKIPIF 1 < 0  B. SKIPIF 1 < 0  C.7 D.6【解答】解: SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故选: SKIPIF 1 < 0 .2.如图,边长为 SKIPIF 1 < 0 的正方形 SKIPIF 1 < 0 中,有一个小正方形 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别在 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 上,若 SKIPIF 1 < 0 ,则小正方形的面积等于   SKIPIF 1 < 0  .【解答】解: SKIPIF 1 < 0 正方形 SKIPIF 1 < 0 的边长为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为正方形 SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0 小正方形的面积等于: SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0 故答案为: SKIPIF 1 < 0 .三.解答题(共15小题)3.已知等边 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 分别在边 SKIPIF 1 < 0 、 SKIPIF 1 < 0 上,将 SKIPIF 1 < 0 沿 SKIPIF 1 < 0 折叠, SKIPIF 1 < 0 点落在 SKIPIF 1 < 0 边上的 SKIPIF 1 < 0 处.(1)求证: SKIPIF 1 < 0 ;(2)若 SKIPIF 1 < 0 时,求 SKIPIF 1 < 0 .【解答】解:(1)证明: SKIPIF 1 < 0 等边 SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0 将 SKIPIF 1 < 0 沿 SKIPIF 1 < 0 折叠, SKIPIF 1 < 0 点落在 SKIPIF 1 < 0 边上的 SKIPIF 1 < 0 处. SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0 又 SKIPIF 1 < 0  SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0  SKIPIF 1 < 0 设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 翻折, SKIPIF 1 < 0 设 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0 由 SKIPIF 1 < 0 得: SKIPIF 1 < 0 ①由 SKIPIF 1 < 0 得: SKIPIF 1 < 0 ②由①②解得: SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0 .4.如图有一块三角尺, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,用一张面积最小的正方形纸片将这个三角尺完全覆盖.求出这个正方形的面积.【解答】解: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是正方形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,答:这个正方形的面积为: SKIPIF 1 < 0 .5.已知:如图, SKIPIF 1 < 0 是等边三角形,点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别在边 SKIPIF 1 < 0 、 SKIPIF 1 < 0 上, SKIPIF 1 < 0 .(1)求证: SKIPIF 1 < 0 ;(2)如果 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的长.【解答】(1)证明: SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ;(2)解:由(1)证得 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 或 SKIPIF 1 < 0 .6.如图,在矩形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是边 SKIPIF 1 < 0 上的任意一点 SKIPIF 1 < 0 与 SKIPIF 1 < 0 、 SKIPIF 1 < 0 不重合),作 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .(1)判断 SKIPIF 1 < 0 与 SKIPIF 1 < 0 是否相似,并说明理由.(2)连接 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,试求出此时 SKIPIF 1 < 0 的长.【解答】解:(1) SKIPIF 1 < 0 与 SKIPIF 1 < 0 相似,理由如下: SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是矩形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)连接 SKIPIF 1 < 0 ,如图所示:由(1)知 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 在矩形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .7.如图1,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 边上从 SKIPIF 1 < 0 向 SKIPIF 1 < 0 运动.以 SKIPIF 1 < 0 为顶点作 SKIPIF 1 < 0 ,射线 SKIPIF 1 < 0 交 SKIPIF 1 < 0 边于点 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交射线 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 .(1)求证: SKIPIF 1 < 0 .(2)当 SKIPIF 1 < 0 时(如图 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的长.(3)设点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 边上从 SKIPIF 1 < 0 向 SKIPIF 1 < 0 运动的过程中,直接写出点 SKIPIF 1 < 0 运动的路径长.【解答】(1)证明: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)解:如图,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,由(1)得 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(3)解: SKIPIF 1 < 0 点随着 SKIPIF 1 < 0 点的运动而运动, SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上, SKIPIF 1 < 0 点的轨迹也是一条线段,如图,当 SKIPIF 1 < 0 与 SKIPIF 1 < 0 点重合时, SKIPIF 1 < 0 点在 SKIPIF 1 < 0 的位置, SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 点与 SKIPIF 1 < 0 点重合时, SKIPIF 1 < 0 点在 SKIPIF 1 < 0 的位置, SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 点的运动路径, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,△ SKIPIF 1 < 0 是等腰三角形, SKIPIF 1 < 0 ,△ SKIPIF 1 < 0 与 SKIPIF 1 < 0 都是等腰三角形, SKIPIF 1 < 0 △ SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,由(2)得 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 运动的路径长为 SKIPIF 1 < 0 .8.在 SKIPIF 1 < 0 中,点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 在边 SKIPIF 1 < 0 上,点 SKIPIF 1 < 0 在边 SKIPIF 1 < 0 上,连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 (1)如图1,点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 重合, SKIPIF 1 < 0 时①若 SKIPIF 1 < 0 平分 SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 ;②若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0   SKIPIF 1 < 0 或 SKIPIF 1 < 0  ;(2)如图2,点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 不重合.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值.【解答】解:(1)① SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 平分 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 ;②如图1,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 或 SKIPIF 1 < 0 ;(2)如图2,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 设 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,同理由(1)得: SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .9.已知:在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且点 SKIPIF 1 < 0 , SKIPIF 1 < 0 分别在矩形 SKIPIF 1 < 0 的边 SKIPIF 1 < 0 , SKIPIF 1 < 0 上.(1)如图1,填空:当点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0   SKIPIF 1 < 0  ;(2)如图2,若 SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 与 SKIPIF 1 < 0 相交于点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 ;(3)如图3,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 分别交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 .【解答】(1)解: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 ;(2)证明:延长 SKIPIF 1 < 0 、 SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(3)证明:如图,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 的延长线于 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,同(1)同理得, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 .10.在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 为直线 SKIPIF 1 < 0 上一动点(不与点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 重合),连接 SKIPIF 1 < 0 ,将线段 SKIPIF 1 < 0 所在的直线绕点 SKIPIF 1 < 0 顺时针旋转 SKIPIF 1 < 0 得到直线 SKIPIF 1 < 0 ,再将线段 SKIPIF 1 < 0 所在的直线绕点 SKIPIF 1 < 0 顺时针旋转 SKIPIF 1 < 0 得到直线 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 相交于点 SKIPIF 1 < 0 .(1)当点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上,当 SKIPIF 1 < 0 时,如图1,直接判断 SKIPIF 1 < 0 的大小;(2)当点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上,当 SKIPIF 1 < 0 时,如图2,试判断线段 SKIPIF 1 < 0 的大小,并说明理由;(3)当点 SKIPIF 1 < 0 在直线 SKIPIF 1 < 0 上,当 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 时,请利用备用图探究 SKIPIF 1 < 0 面积的大小(直接写出结果即可).【解答】解:(1)如图1,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 将线段 SKIPIF 1 < 0 所在的直线绕点 SKIPIF 1 < 0 顺时针旋转 SKIPIF 1 < 0 得到直线 SKIPIF 1 < 0 ,再将线段 SKIPIF 1 < 0 所在的直线绕点 SKIPIF 1 < 0 顺时针旋转 SKIPIF 1 < 0 得到直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 四点共圆, SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 ,理由如下:如图2,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 将线段 SKIPIF 1 < 0 所在的直线绕点 SKIPIF 1 < 0 顺时针旋转 SKIPIF 1 < 0 得到直线 SKIPIF 1 < 0 ,再将线段 SKIPIF 1 < 0 所在的直线绕点 SKIPIF 1 < 0 顺时针旋转 SKIPIF 1 < 0 得到直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 四点共圆, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ;(3) SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 不在线段 SKIPIF 1 < 0 上,当点 SKIPIF 1 < 0 在点 SKIPIF 1 < 0 的右侧时,如图3,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,由(2)可知 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;当点 SKIPIF 1 < 0 在点 SKIPIF 1 < 0 的左侧时,如图4,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,由(2)可知 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;综上所述: SKIPIF 1 < 0 面积为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .11.如图,在 SKIPIF 1 < 0 中,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,将 SKIPIF 1 < 0 与 SKIPIF 1 < 0 重合在一起, SKIPIF 1 < 0 不动, SKIPIF 1 < 0 运动,并满足:点 SKIPIF 1 < 0 在边 SKIPIF 1 < 0 上沿 SKIPIF 1 < 0 到 SKIPIF 1 < 0 的方向运动,且 SKIPIF 1 < 0 始终经过点 SKIPIF 1 < 0 , SKIPIF 1 < 0 与 SKIPIF 1 < 0 交于 SKIPIF 1 < 0 点.(1)求证: SKIPIF 1 < 0 ;(2)当 SKIPIF 1 < 0 时,①求 SKIPIF 1 < 0 的长;②直接写出重叠部分的面积;(3)在 SKIPIF 1 < 0 运动过程中,当重叠部分构成等腰三角形时,求 SKIPIF 1 < 0 的长.【解答】(1)证明: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)①当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;②在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 重叠部分的面积为 SKIPIF 1 < 0 ;(3)①当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,②当 SKIPIF 1 < 0 时,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ;③当 SKIPIF 1 < 0 时,点 SKIPIF 1 < 0 与点 SKIPIF 1 < 0 重合,即 SKIPIF 1 < 0 ,此时重叠部分图形不能构成三角形; SKIPIF 1 < 0 或 SKIPIF 1 < 0 .12.如图,直线 SKIPIF 1 < 0 与双曲线 SKIPIF 1 < 0 的交点为 SKIPIF 1 < 0 ,与 SKIPIF 1 < 0 轴的交点为 SKIPIF 1 < 0 .(1)求 SKIPIF 1 < 0 的度数;(2)求 SKIPIF 1 < 0 的长;(3)已知点 SKIPIF 1 < 0 为双曲线 SKIPIF 1 < 0 上的一点,当 SKIPIF 1 < 0 时,求点 SKIPIF 1 < 0 的坐标.【解答】解:(1)设直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴交于点 SKIPIF 1 < 0 ,如图所示:当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .即点 SKIPIF 1 < 0 .当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即点 SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0 .(2)过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴,垂足为 SKIPIF 1 < 0 ,如图所示.设点 SKIPIF 1 < 0 坐标为: SKIPIF 1 < 0 .且 SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 .即: SKIPIF 1 < 0 . SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍 SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 .即: SKIPIF 1 < 0 .(3)过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 轴上,再过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 点,如图所示.设 SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 是 SKIPIF 1 < 0 一内角的外角. SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 即: SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 .13.【感知】如图①,在正方形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 为 SKIPIF 1 < 0 边上一点,连结 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .易证: SKIPIF 1 < 0 .(不需要证明)【探究】如图②,在矩形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 为 SKIPIF 1 < 0 边上一点,连结 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .(1)求证: SKIPIF 1 < 0 .(2)若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,求 SKIPIF 1 < 0 的长.【应用】如图③,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 为 SKIPIF 1 < 0 边上一点(点 SKIPIF 1 < 0 不与点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 重合),连结 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .当 SKIPIF 1 < 0 为等腰三角形时, SKIPIF 1 < 0 的长为   SKIPIF 1 < 0 或2 .【解答】【探究】(1)证明: SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是矩形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)解: SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 ,由(1)知 SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;【应用】解:如果 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则点 SKIPIF 1 < 0 与点 SKIPIF 1 < 0 重合,点 SKIPIF 1 < 0 与点 SKIPIF 1 < 0 重合,不符合题意,②如果 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 的外角, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;如果 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 ,综上, SKIPIF 1 < 0 的长为 SKIPIF 1 < 0 或2,故答案为: SKIPIF 1 < 0 或2.14.如图1,已知正方形 SKIPIF 1 < 0 在直线 SKIPIF 1 < 0 的上方, SKIPIF 1 < 0 在直线 SKIPIF 1 < 0 上, SKIPIF 1 < 0 是射线 SKIPIF 1 < 0 上一点,以 SKIPIF 1 < 0 为边在直线 SKIPIF 1 < 0 的上方作正方形 SKIPIF 1 < 0 .(1)连接 SKIPIF 1 < 0 ,观察并猜测 SKIPIF 1 < 0 的值,并说明理由;(2)如图2,将图1中正方形 SKIPIF 1 < 0 改为矩形 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 为常数), SKIPIF 1 < 0 是射线 SKIPIF 1 < 0 上一动点(不含端点 SKIPIF 1 < 0 ,以 SKIPIF 1 < 0 为边在直线 SKIPIF 1 < 0 的上方作矩形 SKIPIF 1 < 0 ,使顶点 SKIPIF 1 < 0 恰好落在射线 SKIPIF 1 < 0 上,当点 SKIPIF 1 < 0 沿射线 SKIPIF 1 < 0 运动时,请用含 SKIPIF 1 < 0 , SKIPIF 1 < 0 的代数式表示 SKIPIF 1 < 0 的值.【解答】解:(1) SKIPIF 1 < 0 ,理由是:如图1,作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)如图(2)作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 .由已知可得 SKIPIF 1 < 0 ,结合(1)易得 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 在射线 SKIPIF 1 < 0 上, SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 当点 SKIPIF 1 < 0 沿射线 SKIPIF 1 < 0 运动时, SKIPIF 1 < 0 .15.如图1,在矩形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 边上的动点,点 SKIPIF 1 < 0 从点 SKIPIF 1 < 0 出发,运动到点 SKIPIF 1 < 0 停止, SKIPIF 1 < 0 是 SKIPIF 1 < 0 边上一动点,在运动过程中,始终保持 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 , SKIPIF 1 < 0 .(1)直接写出 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的函数关系式,并写出自变量 SKIPIF 1 < 0 的取值范围   SKIPIF 1 < 0  ;(2)先完善表格,然后在平面直角坐标系中(如图 SKIPIF 1 < 0 利用描点法画出此抛物线,直接写出 SKIPIF 1 < 0   ; (3)结合图象,指出 SKIPIF 1 < 0 、 SKIPIF 1 < 0 在运动过程中,当 SKIPIF 1 < 0 达到最大值时, SKIPIF 1 < 0 的值是   ;并写出在整个运动过程中,点 SKIPIF 1 < 0 运动的总路程   .【解答】解:(1) SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是矩形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 边上的动点,点 SKIPIF 1 < 0 从点 SKIPIF 1 < 0 出发,运动到点 SKIPIF 1 < 0 停止, SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 ;(2)当 SKIPIF 1 < 0 时,代入 SKIPIF 1 < 0 中得: SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 ,画出的抛物线如图所示:(3) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 最大 SKIPIF 1 < 0 , SKIPIF 1 < 0 当 SKIPIF 1 < 0 达到最大值时, SKIPIF 1 < 0 的值是5; SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 在整个运动过程中,点 SKIPIF 1 < 0 运动的总路程为 SKIPIF 1 < 0 ,故答案为:5, SKIPIF 1 < 0 .16.【基础巩固】(1)如图1,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 ,分别过 SKIPIF 1 < 0 、 SKIPIF 1 < 0 两点作 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,垂足分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 .求证: SKIPIF 1 < 0 .【尝试应用】(2)如图2,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 是 SKIPIF 1 < 0 上一点,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 的垂线交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的长.【拓展提高】(3)如图3,在平行四边形 SKIPIF 1 < 0 中,在 SKIPIF 1 < 0 上取点 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求平行四边形 SKIPIF 1 < 0 的面积.【解答】(1)证明: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 .(2)解:过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .由(1)得 SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 .(3)解:过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 的延长线于点 SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是平行四边形, SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 ,由(1)得 SKIPIF 1 < 0 . SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 平行四边形 SKIPIF 1 < 0 的面积 SKIPIF 1 < 0 .17.感知:(1)数学课上,老师给出了一个模型:如图1, SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ;又因为 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,进而得到 SKIPIF 1 < 0   SKIPIF 1 < 0   SKIPIF 1 < 0 我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,如图,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 边上的一个动点(不与 SKIPIF 1 < 0 、 SKIPIF 1 < 0 重合),点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 边上的一个动点,且 SKIPIF 1 < 0 .①求证: SKIPIF 1 < 0 ;②当点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 中点时,求 SKIPIF 1 < 0 的长;拓展:(3)在(2)的条件下,如图2,当 SKIPIF 1 < 0 为等腰三角形时,请直接写出 SKIPIF 1 < 0 的长.【解答】(1)解: SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 ;(2)①证明: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;②解: SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 ;(3)解:当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,不合题意, SKIPIF 1 < 0 ;当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0  SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,综上所述:当 SKIPIF 1 < 0 为等腰三角形时, SKIPIF 1 < 0 的长为2或 SKIPIF 1 < 0 .  SKIPIF 1 < 0  SKIPIF 1 < 0 2345678 SKIPIF 1 < 0  SKIPIF 1 < 0  SKIPIF 1 < 0 2 SKIPIF 1 < 0 3 SKIPIF 1 < 0 3 SKIPIF 1 < 0 2 SKIPIF 1 < 0 

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map