![1.1 菱形的性质与判定同步练习北师大版九年级 上册 数学第1页](http://img-preview.51jiaoxi.com/2/3/16466243/0-1733308848449/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.1 菱形的性质与判定同步练习北师大版九年级 上册 数学第2页](http://img-preview.51jiaoxi.com/2/3/16466243/0-1733308848513/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![1.1 菱形的性质与判定同步练习北师大版九年级 上册 数学第3页](http://img-preview.51jiaoxi.com/2/3/16466243/0-1733308848535/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学九年级上册1 菱形的性质与判定一课一练
展开
这是一份数学九年级上册1 菱形的性质与判定一课一练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题。
1.在菱形ABCD中,相邻两内角度数之比为1:2,若它较短的对角线长度为4cm,则它的面积是( )
A.16cm2B.4cm2C.8cm2D.8cm2
2.如图,在菱形ABCD中,对角线AC=8,BD=10,则△AOD的面积为( )
A.9 B.10 C.11 D.12
3.如图,在菱形ABCD中,∠BAD=60°,连接AC,BD,若BD=8,则AC的长为( )
A.43 B.8 C.83 D.16
4. 如图,在菱形 ABCD 中,对角线 AC,BD 相交于点 O,H 为 BC 中点,AC=6,BD=8,则线段 OH 的长为:
A. 125B. 52C. 3D. 5
5.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有( )
A. AC⊥BD B. AB=BC
C. AC=BD D.∠1=∠2
6.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是( )
A.矩形B. 菱形C. 正方形D. 等腰梯
7.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点O,点D在y轴正半轴上,则点C的坐标为( )
A.B.C.D.
8.如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F的坐标为(2,3),则图象最低点E的坐标为( )
A.(,2)B.(,)C.(,)D.(,2)
9. 如图,在菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )
A.78° B.75° C.60° D.45°
10.如图所示,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.一组邻边相等的平行四边形是菱形
B.四边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直平分的四边形是菱形
11.如图,在菱形ABCD中,P为对角线AC上一点.若AB=4,PA=5,PC=2,则PB的长为( )
A.B.C.D.
12.如图,菱形ABCD中,点E是AB的中点,对角线AC、BD相交于点F,连接EF,如果EF=4, 那么菱形的ABCD的周长为( )
A.4B.8C.16D.32
二、填空题。
1.菱形ABCD的两条对角线AC=8cm,BD=6cm,那么菱形的边长是 cm.
2.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,顶点B,C的坐标分别为(﹣6,0),(4,0),则点D的坐标是 .
3.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是 cm.
4.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件: ,使▱ABCD是菱形.
5.如图,坐标原点O为菱形ABCD的中心,AD∥x轴,A点坐标为(﹣4,3),则B点坐标为 .
6. 如图,点P是线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,点M,N分别是对角线AC,BE的中点,连接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,则线段MN的长为 .
三、解答题。
1.如图,在▱ABCD中,AE是∠DAB的平分线,EF∥AD交AB、CD于点F、E,求证:四边形ADEF是菱形.
2.如图,在菱形ABCD中,点M、N分别在AB、CB上,且∠ADM=∠CDN,求证:BM=BN.
3.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE、CF.
求证:四边形AECF是菱形.
4.如图,在四边形 ABCD 中,AB∥DC,AB=AD,对角线 AC,BD 交于点 O,AC 平分 ∠BAD,过点 C 作 CE⊥AB 交 AB 的延长线于点 E,连接 OE.
(1)求证:四边形 ABCD 是菱形;
(2)若 AB=5,BD=2,求 OE 的长.
5.已知四边形ABCD为菱形,周长为32cm, ∠ABC=60°,对角线AC与BD相交于点O.
(1)求AC, BD的长
(2)求菱形ABCD的面积
6.已知:如图,在△ABC中,E、F、M分别是各边的中点,CD是高.求证:
(1)∠EDM=∠EFM;
(2)若四边形CEFM是菱形,△ABC应满足什么条件 (直接写出答案).
相关试卷
这是一份初中1 菱形的性质与判定课时作业,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版(2024)九年级上册第一章 特殊平行四边形1 菱形的性质与判定随堂练习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版(2024)九年级上册1 菱形的性质与判定课时训练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)