所属成套资源:新高考数学考前考点冲刺精练卷 (2份,原卷版+教师版)
新高考数学考前考点冲刺精练卷57《两个计数原理》(2份,原卷版+教师版)
展开
这是一份新高考数学考前考点冲刺精练卷57《两个计数原理》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷57《两个计数原理》教师版doc、新高考数学考前考点冲刺精练卷57《两个计数原理》教师版pdf、新高考数学考前考点冲刺精练卷57《两个计数原理》原卷版doc、新高考数学考前考点冲刺精练卷57《两个计数原理》原卷版pdf等4份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
一、选择题
若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )
A.60种 B.63种 C.65种 D.66种
【答案解析】答案为:D
解析:要想同时取4个不同的数使其和为偶数,则取法有三类:
①4个数都是偶数,有1种取法;
②2个数是偶数,2个数是奇数,有Ceq \\al(2,4)·Ceq \\al(2,5)=60(种)取法;
③4个数都是奇数,有5种取法.根据分类加法计数原理,不同的取法共有1+60+5=66(种).
在所有的两位数中,个位数字大于十位数字的两位数共有( )
A.50个 B.45个 C.36个 D.35个
【答案解析】答案为:C
解析:由题意,知十位上的数字可以是1,2,3,4,5,6,7,8,共8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理,知符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).
某学校的3个班级将要去甲、乙、丙、丁4个工厂参观学习,要求每个班只能去1个工厂参观学习,且甲工厂必须有班级参观学习,则不同的参观方案有( )
A.16种 B.25种 C.37种 D.48种
【答案解析】答案为:C
解析:每个班级都可以从这4个工厂中选1个参观学习,各有4种选择,根据分步乘法计数原理,共有43=64(种)参观方案,若甲工厂没有班级参观学习,此时每个班级都可以从其余3个工厂中选1个参观学习,各有3种选择,共有33=27(种)参观方案,所以甲工厂必须有班级参观学习,不同的参观方案有64﹣27=37(种).
某人要给厨房中装有不同调料的5个瓶子贴上对应的标签,若恰好贴错了3个,则贴错的可能情况种数为( )
A.9 B.12 C.18 D.20
【答案解析】答案为:D
解析:由题意,可分为两步:第一步,从5个瓶子中选出3个瓶子,有Ceq \\al(3,5)=10(种)情况,第二步,对选出的3个瓶子进行错位重排,有2种情况,所以贴错的可能情况种数为10×2=20.
从6人中选出4人参加数学、物理、化学、生物比赛,每人只能参加其中一项,且每项比赛都有人参加,其中甲、乙两人都不能参加化学比赛,则不同的参赛方案的种数为( )
A.94 B.180 C.240 D.286
【答案解析】答案为:C
解析:第一步,因为甲、乙两人都不能参加化学比赛,所以从剩下的4人中选1人参加化学比赛,共有4种选法;
第二步,在剩下的5人中任选3人参加数学、物理、生物比赛,共有5×4×3=60(种)选法.
由分步乘法计数原理,得不同的参赛方案的种数为4×60=240.
甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学.若从甲、乙两组中各选出2名同学,则选出的4名同学中恰有1名女同学的不同选法共有( )
A.150种 B.180种 C.300种 D.345种
【答案解析】答案为:D
解析:这名女同学可以在甲组选出也可以在乙组选出,故分两类计算.甲组中选出1名女同学有Ceq \\al(1,5)×Ceq \\al(1,3)×Ceq \\al(2,6)=225(种)选法;乙组中选出一名女同学有Ceq \\al(2,5)×Ceq \\al(1,6)×Ceq \\al(1,2)=120(种)选法.故共有345种选法.
用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数的个数为( )
A.12 B.18 C.24 D.30
【答案解析】答案为:B
解析:分三步完成,第1步,确定被使用了2次的数字,有3种方法;
第2步,把这2个相同的数字排在四位数不相邻的两个数位上,有3种方法;
第3步,将余下的2个数字排在四位数余下的两个数位上,有2种方法,
由分步乘法计数原理知,不同的四位数有3×3×2=18(个).
某校高一年级有四个班,四位老师各教一个班的数学.在该年级某次数学考试中,要求每位数学老师均不在本班监考,则不同的安排监考的方法种数为( )
A.8 B.9 C.12 D.24
【答案解析】答案为:B
解析:设四个班分别是A,B,C,D,对应的数学老师分别是a,b,c,d.让a老师先选,可从B,C,D班中选一个,有3种选法,不妨假设a老师选的是B,则b老师从剩下的三个班级中任选一个,有3种选法,剩下的两位老师都只有1种选法.由分步乘法计数原理,知共有3×3×1×1=9(种)不同的安排方法.
如图是在“赵爽弦图”的基础上创作出的一个“数学风车”平面模型,图中正方形ABCD内部为“赵爽弦图”(由四个全等的直角三角形和一个小正方形组成),△ABE,△BCF,△CDG,△DAH这4个三角形和“赵爽弦图”ABCD涂色,且相邻区域(即图中有公共点的区域)不同色,已知有4种不同的颜色可供选择.则不同的涂色方法种数是( )
A.48 B.54 C.72 D.108
【答案解析】答案为:C
解析:设“赵爽弦图”ABCD为①区,△ABE,△BCF,△CDG,△DAH这4个三角形分别为②,③,④,⑤区.
第一步给①区涂色,有4种涂色方法.
第二步给②区涂色,有3种涂色方法.
第三步给③区涂色,有2种涂色方法.
第四步给④区涂色,若④区与②区同色时,⑤区有2种涂色方法.
若④区与②区不同色时,则④区有1种涂色方法,⑤区有1种涂色方法.
所以共有4×3×2×(2+1×1)=72.
算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的三枚算珠,可以表示不同整数的个数为( )
图1 图2
A.16 B.15 C.12 D.10
【答案解析】答案为:C
解析:由题意,拨动三枚算珠,有4种拨法:
①个位拨动三枚,有2种结果:3,7;
②十位拨动一枚,个位拨动两枚,有4种结果:12,16,52,56;
③十位拨动两枚,个位拨动一枚,有4种结果:21,25,61,65;
④十位拨动三枚,有2种结果:30,70.
综上,拨动题图1算盘中的三枚算珠,可以表示不同整数的个数为2+4+4+2=12.
二、多选题
(多选)有4位同学报名参加三个不同的社团,则下列说法正确的是( )
A.每位同学限报其中一个社团,则不同的报名方法共有34种
B.每位同学限报其中一个社团,则不同的报名方法共有43种
C.每个社团限报一个人,则不同的报名方法共有24种
D.每个社团限报一个人,则不同的报名方法共有33种
【答案解析】答案为:AC
解析:对于A,第1个同学有3种报法,第2个同学有3种报法,后面的2个同学也有3种报法,根据分步乘法计数原理知共有34种结果,A正确,B错误;对于C,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步乘法计数原理知共有4×3×2=24(种)结果,C正确,D错误.
(多选)现有4个数学课外兴趣小组,第一、二、三、四组分别有7人、8人、9人、10人,则下列说法正确的是( )
A.选1人为负责人的选法种数为34
B.每组选1名组长的选法种数为5 400
C.若推选2人发言,这2人需来自不同的小组,则不同的选法种数为420
D.若另有3名学生加入这4个小组,加入的小组可自由选择,且第一组必须有人选,则不同的选法有37种
【答案解析】答案为:AD
解析:对于A,4个数学课外兴趣小组共有7+8+9+10=34(人),故选1人为负责人的选法共有34种,A对;
对于B,分四步:第一、二、三、四步分别为从第一、二、三、四组中各选1名组长,
所以不同的选法共有7×8×9×10=5 040(种),B错;
对于C,分六类:从第一、二组中各选1人,有7×8种不同的选法;
从第一、三组中各选1人,有7×9种不同的选法;
从第一、四组中各选1人,有7×10种不同的选法;
从第二、三组中各选1人,有8×9种不同的选法;
从第二、四组中各选1人,有8×10种不同的选法;
从第三、四组中各选1人,有9×10种不同的选法.
所以不同的选法共有7×8+7×9+7×10+8×9+8×10+9×10=431(种),C错;
对于D,若不考虑限制条件,每个人都有4种选法,共有43=64(种)选法,
其中第一组没有人选,每个人都有3种选法,共有33=27(种)选法,
所以不同的选法有64﹣27=37(种),D对.
三、填空题
甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).
【答案解析】答案为:336
解析:甲有7种站法,乙有7种站法,丙有7种站法,故不考虑限制共有7×7×7=343(种)站法,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有343﹣7=336(种).
某次活动中,有30个人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为 .(用数字作答)
【答案解析】答案为:7 200
解析:最先选出的1个人有30种方法,则这个人所在的行和列不能再选人,还剩一个5行4列的队形,可知选第2个人有20种方法,则该人所在的行和列也不能再选人,还剩一个4行3列的队形,可知选第3个人有12种方法,根据分步乘法计数原理,总的选法种数是30×20×12=7 200.
人们习惯把最后一位是6的多位数叫作“吉祥数”,则无重复数字的四位吉祥数(首位不能是零)共有 个.
【答案解析】答案为:448
解析:第一步,确定千位,除去0和6,有8种不同的选法;第二步,确定百位,除去6和千位数字外,有8种不同的选法;第三步,确定十位,除去6和千位、百位上的数字外,有7种不同的选法.故共有8×8×7=448(个)不同的“吉祥数”.
3个不同的小球放入4个不同的盒子,每个盒子至多放1个小球,共有 种放法.
【答案解析】答案为:24
解析:分三步来完成:
第一步,放第一个小球,有4种放法,
第二步,放第二个小球,有3种放法,
第三步,放第三个小球,有2种放法,
根据分步乘法计数原理,共有4×3×2=24(种)放法.
4张卡片的正、反面分别写有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成 个不同的三位数.
【答案解析】答案为:168
解析:要组成三位数,根据百位、十位、个位应分三步:第一步:百位可放8﹣1=7(个)数;第二步:十位可放6个数;第三步:个位可放4个数.故由分步乘法计数原理,得共可组成7×6×4=168(个)不同的三位数.
从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种(用数字作答).
【答案解析】答案为:36
解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员,有4种选法.第三步,从剩下的3人中选体育委员,有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).
相关试卷
这是一份新高考数学考前考点冲刺精练卷58《排列与组合》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷58《排列与组合》教师版doc、新高考数学考前考点冲刺精练卷58《排列与组合》教师版pdf、新高考数学考前考点冲刺精练卷58《排列与组合》原卷版doc、新高考数学考前考点冲刺精练卷58《排列与组合》原卷版pdf等4份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份新高考数学考前考点冲刺精练卷48《双曲线》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷48《双曲线》教师版pdf、新高考数学考前考点冲刺精练卷48《双曲线》教师版doc、新高考数学考前考点冲刺精练卷48《双曲线》原卷版doc、新高考数学考前考点冲刺精练卷48《双曲线》原卷版pdf等4份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份新高考数学考前考点冲刺精练卷47《直线与椭圆》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷47《直线与椭圆》教师版pdf、新高考数学考前考点冲刺精练卷47《直线与椭圆》教师版doc、新高考数学考前考点冲刺精练卷47《直线与椭圆》原卷版doc、新高考数学考前考点冲刺精练卷47《直线与椭圆》原卷版pdf等4份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。