所属成套资源:新高考数学考前考点冲刺精练卷 (2份,原卷版+教师版)
新高考数学考前考点冲刺精练卷60《随机事件与概率》(2份,原卷版+教师版)
展开
这是一份新高考数学考前考点冲刺精练卷60《随机事件与概率》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷60《随机事件与概率》教师版doc、新高考数学考前考点冲刺精练卷60《随机事件与概率》教师版pdf、新高考数学考前考点冲刺精练卷60《随机事件与概率》原卷版doc、新高考数学考前考点冲刺精练卷60《随机事件与概率》原卷版pdf等4份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
一、选择题
下列说法错误的是( )
A.任一事件的概率总在[0,1]内 B.不可能事件的概率一定为0
C.必然事件的概率一定为1 D.概率是随机的,在试验前不能确定
【答案解析】答案为:D
解析:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1,概率是客观存在的,是一个确定值.
同时抛掷两枚完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是( )
A.3 B.4 C.5 D.6
【答案解析】答案为:D
解析:事件A包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.
抛掷一颗质地均匀的骰子,有如下随机事件:
Ci=“点数为i”,其中i=1,2,3,4,5,6;
D1=“点数不大于2”,D2=“点数不小于2”,D3=“点数大于5”;
E=“点数为奇数”,F=“点数为偶数”.
下列结论正确的是( )
A.C1与C2对立 B.D1与D2互斥 C.D3⊆F D.E⊇(D1∩D2)
【答案解析】答案为:C
解析:对于A,C1=“点数为1”,C2=“点数为2”,C1与C2互斥但不对立,故选项A不正确;
对于B,D1=“点数不大于2”,D2=“点数不小于2”,当出现的点是2时,D1与D2同时发生,所以D1与D2不互斥,故选项B不正确;
对于C,D3=“点数大于5”表示出现6点,F=“点数为偶数”,所以D3发生F一定发生,所以D3⊆F,故选项C正确;
对于D,D1∩D2表示两个事件同时发生,即出现2点,E=“点数为奇数”,所以D1∩D2发生,事件E不发生,所以E⊇(D1∩D2)不正确,故选项D不正确.
口袋中装有3个红球和4个黑球,每个球编有不同的号码,现从中取出3个球,则互斥而不对立的事件是( )
A.至少有1个红球与至少有1个黑球
B.至少有1个红球与都是黑球
C.至少有1个红球与至多有1个黑球
D.恰有1个红球与恰有2个红球
【答案解析】答案为:D
解析:对于A,不互斥,如取出2个红球和1个黑球,与至少有1个黑球不是互斥事件,所以A不符合题意;
对于B,至少有1个红球与都是黑球不能同时发生,且必有其中1个发生.所以为互斥事件,且为对立事件,所以B不符合题意;
对于C,不互斥.如取出2个红球和1个黑球,与至多有1个黑球不是互斥事件,所以C不符合题意;
对于D,恰有1个红球与恰有2个红球不能同时发生,所以为互斥事件,但不对立,如还有3个红球.
抛掷一枚质地均匀的骰子,有如下随机事件:Ai=“向上的点数为i”,其中i=1,2,3,4,5,6,B=“向上的点数为偶数”,则下列说法正确的是( )
A.eq \x\t(A)1⊆B B.A2+B=Ω C.A3与B互斥 D.A4与eq \x\t(B)对立
【答案解析】答案为:C
解析:对于A,eq \x\t(A)1={2,3,4,5,6},B={2,4,6},∴B⊆eq \x\t(A)1,故A错误;
对于B,A2+B={2}∪{2,4,6}={2,4,6}≠Ω,故B错误;
对于C,A3与B不能同时发生,是互斥事件,故C正确;
对于D,A4={4},eq \x\t(B)={1,3,5},A4与eq \x\t(B)是互斥但不对立事件,故D错误.
东京奥运会中国体育代表团共有777人,截止到7月15日,未完成疫苗接种的有3人,则中国体育代表团成员的疫苗接种率约为( )
% % % %
【答案解析】答案为:A
解析:中国体育代表团成员的疫苗接种率约为eq \f(777-3,777)≈0.996 1=99.61%.
在一个袋子中装有分别标注1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出小球标注的数字之差的绝对值为2或4的事件包含的样本点个数为( )
A.2 B.4 C.6 D.8
【答案解析】答案为:B
解析:从5个小球中任取2个,其中数字之差的绝对值为2或4的事件包含(1,3),(1,5),(2,4),(3,5),共4个样本点.
对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( )
A.A⊆D B.B∩D=∅ C.A∪C=D D.A∪C=B∪D
【答案解析】答案为:D
解析:对于选项A,事件A包含于事件D,故A正确.
对于选项B,由于事件B,D不能同时发生.故B∩D=∅,故B正确.
对于选项C,由题意知正确.
对于选项D,由于A∪C=D={至少有一弹击中飞机},不是必然事件;而B∪D为必然事件,所以A∪C≠B∪D,故D不正确.
二、多选题
(多选)依次抛掷两枚骰子,所得点数之和记为X,那么X=4表示的随机试验的样本点是( )
A.第一枚是3点,第二枚是1点
B.第一枚是1点,第二枚是3点
C.两枚都是4点
D.两枚都是2点
【答案解析】答案为:ABD
解析:X=4表示两次抛掷所得总数之和为4,则随机试验的样本点是“第一枚是3点,第二枚是1点”或“第一枚是1点,第二枚是3点”或“两枚都是2点”.
(多选)下列说法正确的是( )
A.若事件A与B互斥,则A∪B是必然事件
B.《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国四大名著.若在这四大名著中,甲、乙、丙、丁分别任取一本进行阅读,设事件E=“甲取到《红楼梦》”,事件F=“乙取到《红楼梦》”,则E与F是互斥但不对立事件
C.掷一枚骰子,记录其向上的点数,记事件A=“向上的点数不大于5”,事件B=“向上的点数为质数”,则B⊆A
D.10个产品中有2个次品,从中抽取一个产品检查其质量,则样本空间含有2个样本点
【答案解析】答案为:BCD
解析:对于A,事件A与B互斥时,A∪B不一定是必然事件,故A不正确;对于B,事件E与F不会同时发生,所以E与F是互斥事件,但除了事件E与F之外还有“丙取到红楼梦”“丁取到红楼梦”,所以E与F不是对立事件,故E与F是互斥不对立事件,B正确;对于C,事件A={1,2,3,4,5},事件B={2,3,5},所以B包含于A,C正确;对于D,样本空间Ω={正品,次品},含有2个样本点,故D正确.
(多选)国药集团中国生物北京生物制品研究所研发生产的新型冠状病毒灭活疫苗(Ver细胞),获得世卫组织紧急使用授权,纳入全球“紧急使用清单”(EUL).世卫组织审评认为该疫苗的效力为78.1%,最高达90%,安全性良好,临床试验数据中没有发现安全问题.所谓疫苗的效力,是通过把人群分成两部分,一部分为对照组,注射安慰剂;另一部分为疫苗组,注射疫苗,当从对照组与疫苗组分别获得发病率后,就可以得到注射疫苗的效力=eq \f(对照组发病率-疫苗组发病率,对照组发病率)×100%.关于注射疫苗,下列说法正确的是( )
A.只要注射该种新冠疫苗,就一定不会感染新冠肺炎
B.注射该种新冠疫苗,能使新冠肺炎感染的风险大大降低
C.若对照组10 000人,发病100人;疫苗组20 000人,发病40人,则效力为80%
D.若疫苗的效力为80%,对照组的发病率为50%.那么在10 000个人注射该疫苗后,一定有1 000个人发病
【答案解析】答案为:BC
解析:由题意知,疫苗的效力为78.1%,最高达90%,但不是注射该种新冠疫苗,就一定不会感染新冠肺炎,故选项A错误;
疫苗的效力为78.1%,最高达90%,所以注射该种新冠疫苗,能使新冠肺炎感染的风险大大降低,故选项B正确;
若对照组10 000人,发病100人;疫苗组20 000人,发病40人,则注射疫苗的效力=eq \f(\f(100,10 000)-\f(40,20 000),\f(100,10 000))×100%=80%,故选项C正确;
若疫苗的效力为80%,对照组的发病率为50%,只是反应了一个概率问题,并不能说明在
10 000个人注射该疫苗后,一定有1 000个人发病,故选项D错误.
(多选)一批产品共100件,其中5件是次品,95件是合格品,从这批产品中任意抽取5件,现给出以下四个事件:
事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;
事件D:“至多有一件次品”.
则以下结论正确的是( )
A.A∪B=C B.D∪B是必然事件 C.A∪B=B D.A∪D=C
【答案解析】答案为:AB
解析:A∪B表示的事件为至少有一件次品,即事件C,所以A正确,C不正确;D∪B表示的事件为至少有两件次品或至多有一件次品,包括了所有情况,所以B正确;A∪D表示的事件为至多有一件次品,即事件D,所以D不正确.
三、填空题
笼子中有4只鸡和3只兔,依次取出一只,直到3只兔全部取出,记录剩下动物的脚数.则该试验的样本空间Ω=________.
【答案解析】答案为:{0,2,4,6,8}
解析:最少需要取3次,最多需要取7次,那么剩余鸡的只数最多4只,最少0只,所以剩余动物的脚数可能是8,6,4,2,0.
商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9.若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为________双.
【答案解析】答案为:60
解析:∵第1,2,4组的频数分别为6,7,9,
∴第1,2,4组的频率分别为eq \f(6,40)=0.15,eq \f(7,40)=0.175,eq \f(9,40)=0.225.
∵第3组的频率为0.25,∴第5组的频率是1﹣0.25﹣0.15﹣0.175﹣0.225=0.2,
∴售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).
某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘坐上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,则他乘坐上等车的概率为________.
【答案解析】答案为:eq \f(1,2).
解析:共有6种发车顺序:①上、中、下;②上、下、中;③中,上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为eq \f(3,6)=eq \f(1,2).
四、解答题
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
【答案解析】解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为eq \f(2+16+36,90)=0.6.
所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温低于20,则Y=200×6+(450﹣200)×2﹣450×4=﹣100;
若最高气温位于区间[20,25),则Y=300×6+(450﹣300)×2﹣450×4=300;
若最高气温不低于25,
则Y=450×(6﹣4)=900,所以利润Y的所有可能值为﹣100,300,900.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为eq \f(36+25+7+4,90)=0.8.因此Y大于零的概率的估计值为0.8.
某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
【答案解析】解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为eq \f(60+50,200)=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为eq \f(30+30,200)=0.3,故P(B)的估计值为0.3.
(3)由所给数据得
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.
某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,
160,220,140,160.
(1)完成如下的频率分布表:
近20年六月份降雨量频率分布表
(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.
【答案解析】解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为
(2)根据题意,Y=460+eq \f(X-70,10)×5=eq \f(X,2)+425,
故P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y530)
=P(X210)
=P(X=70)+P(X=110)+P(X=220)
=eq \f(1,20)+eq \f(3,20)+eq \f(2,20)=eq \f(3,10).
故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为eq \f(3,10).
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40]
天数
2
16
36
25
7
4
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
保费
0.85a
a
1.25a
1.5a
1.75a
2a
频率
0.30
0.25
0.15
0.15
0.10
0.05
降雨量
70
110
140
160
200
220
频率
eq \f(1,20)
eq \f(4,20)
eq \f(2,20)
降雨量
70
110
140
160
200
220
频率
eq \f(1,20)
eq \f(3,20)
eq \f(4,20)
eq \f(7,20)
eq \f(3,20)
eq \f(2,20)
相关试卷
这是一份新高考数学考前考点冲刺精练卷58《排列与组合》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷58《排列与组合》教师版doc、新高考数学考前考点冲刺精练卷58《排列与组合》教师版pdf、新高考数学考前考点冲刺精练卷58《排列与组合》原卷版doc、新高考数学考前考点冲刺精练卷58《排列与组合》原卷版pdf等4份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份新高考数学考前考点冲刺精练卷48《双曲线》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷48《双曲线》教师版pdf、新高考数学考前考点冲刺精练卷48《双曲线》教师版doc、新高考数学考前考点冲刺精练卷48《双曲线》原卷版doc、新高考数学考前考点冲刺精练卷48《双曲线》原卷版pdf等4份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份新高考数学考前考点冲刺精练卷47《直线与椭圆》(2份,原卷版+教师版),文件包含新高考数学考前考点冲刺精练卷47《直线与椭圆》教师版pdf、新高考数学考前考点冲刺精练卷47《直线与椭圆》教师版doc、新高考数学考前考点冲刺精练卷47《直线与椭圆》原卷版doc、新高考数学考前考点冲刺精练卷47《直线与椭圆》原卷版pdf等4份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。