2024年广东省惠州市第五中学九上数学开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点P是□ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
A.B.C.D.
2、(4分)如图,直线y=x+b与直线y=kx+7交于点P(3,5),通过观察图象我们可以得到关于x的不等式x+b>kx+7的解集为x>3,这一求解过程主要体现的数学思想是( )
A.分类讨论B.类比C.数形结合D.公理化
3、(4分)若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为( )
A.(1,2)B.(2,1)C.(2,3)D.(1,3)
4、(4分)如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为( )
A.7B.9C.11D.14
5、(4分)一次函数y=kx+b中,y随x的增大而增大,b<0,则这个函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)在▱ABCD中,∠C=32°,则∠A的度数为( )
A.148°B.128°C.138°D.32°
7、(4分)下列二次根式中,与不是同类二次根式的是( )
A.B.C.D.
8、(4分)下列二次根式中,是最简二次根式的为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).
根据图中提供的信息,给出下列四种说法:
①汽车共行驶了120千米;
②汽车在行驶途中停留了0.5小时;
③汽车在行驶过程中的平均速度为千米/小时;
④汽车自出发后3小时至4.5小时之间行驶的速度不变.
其中说法正确的序号分别是_____(请写出所有的).
10、(4分)如图,在中,对角线与相交于点,是边的中点,连结.若,,则的度数为_______.
11、(4分)不等式2x≥-4的解集是 .
12、(4分)在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为 m?
13、(4分)面积为的矩形,若宽为,则长为___.
三、解答题(本大题共5个小题,共48分)
14、(12分)嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.
(1)求5张白纸粘合后的长度;
(2)设x张白纸粘合后总长为ycm.写出y与x之间的函数关系式;
(3)求当x=20时的y值,并说明它在题目中的实际意义.
15、(8分)已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.
(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是 .
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
16、(8分)△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于x轴对称的△A1B1C1;
(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1.
17、(10分)如图,四边形中,,平分,交于.
(1)求证:四边形是菱形;
(2)若点是的中点,试判断的形状,并说明理由.
18、(10分)如图,∠AOB=30°,OP=6,OD=2,PC=PD,求OC的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
20、(4分)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点的坐标为______.
21、(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.
22、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.
23、(4分)已知一次函数与的图象交于点P,则点P的坐标为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形中,对角线的垂直平分线分别交、、于点、、,连接和.
(1)求证:四边形为菱形.
(2)若,,求菱形的周长.
25、(10分)计算:4(﹣)﹣÷+(+1)1.
26、(12分)如图,在5×5的网格中,每个格点小正方形的边长为1,△ABC的三个顶点A、B、C都在网格格点的位置上.
(1)请直接写出AB、BC、AC的长度;
(2)求△ABC的面积;
(3)求边AB上的高.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.
2、C
【解析】
通过观察图象得出结论,这一求解过程主要体现的数学思想是数形结合.
【详解】
∵不等式x+b>kx+7,就是确定直线y=kx+b在直线y=kx+7 上方部分所有的点的横坐标所构成的集合,
∴这一求解过程主要体现的数学思想是数形结合.
故选C.
本题考查了一次函数与一元一次不等式,解答此题时,采用了“数形结合”的数学思想,使问题变得形象、直观,降低了题的难度.
3、A
【解析】
函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.
【详解】
∵关于x,y的二元一次方程组的解为,
∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).
故选A.
本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
4、B
【解析】
先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.
【详解】
解:
∵CD:BD=3:1.
设CD=3x,则BD=1x,
∴BC=CD+BD=7x,
∵BC=21,
∴7x=21,
∴x=3,
∴CD=9,
过点D作DE⊥AB于E,
∵AD是∠BAC的平分线,∠C=90°,
∴DE=CD=9,
∴点D到AB边的距离是9,
故选B.
本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.
5、B
【解析】
试题分析:根据题意,一次函数y=kx+b的值随x的增大而增大,即k>0,
又∵b<0,
∴这个函数的图象经过第一三四象限,
∴不经过第二象限,
故选B.
考点:一次函数图象与系数的关系.
6、D
【解析】
根据平行四边形的性质:对角相等即可求出的度数.
【详解】
四边形是平行四边形,
,
,
.
故选:.
本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.
7、B
【解析】
根据最简二次根式的定义选择即可.
【详解】
A、与是同类二次根式,故A不正确;
B、与不是同类二次根式,故B正确;
C、是同类二次根式,故C不正确;
D、是同类二次根式,故D不正确;
故选:B.
本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.
8、C
【解析】
试题解析:A、,被开方数含分母,不是最简二次根式;
B、,被开方数含能开得尽方的因数,不是最简二次根式;
C、是最简二次根式;
D、,被开方数含能开得尽方的因数,不是最简二次根式.
故选C.
点睛:最简二次根式必须满足两个条件:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、②④
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
解:由图象可知,
汽车共行驶了:120×2=240千米,故①错误,
汽车在行驶图中停留了2﹣1.5=0.5(小时),故②正确,
车在行驶过程中的平均速度为:千米/小时,故③错误,
汽车自出发后3小时至4.5小时之间行驶的速度不变,故④正确,
故答案为:②④.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
10、40°
【解析】
直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】
解:,,
,
对角线与相交于点,是边的中点,
是的中位线,
,
.
故答案为:.
此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出是的中位线是解题关键.
11、x≥-1
【解析】
分析:已知不等式左右两边同时除以1后,即可求出解集.
解答:
解:1x≥-4,
两边同时除以1得:x≥-1.
故答案为x≥-1.
12、1.
【解析】
试题分析:设小明、小刚新的速度分别是xm/s、ym/s,然后根据100s后两人相遇和两人到达终点的路程列出关于x、y的二元一次方程组,求解后再根据小明所跑的路程等于越野赛的全程列式计算即可得解.
试题解析:设小明、小刚新的速度分别是xm/s、ym/s,
由题意得
,
由①得,y=x+1.5③,
由②得,4y-3=6x④,
③代入④得,4x+6-3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=1m.
考点:一次函数的应用;二元一次方程组的应用.
13、2
【解析】
根据矩形的面积公式列式计算即可.
【详解】
解:由题意,可知该矩形的长为:÷==2.
故答案为2
本题考查了二次根式的应用,掌握矩形的面积公式以及二次根式的除法法则是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)1cm;(2)y=17x+2;(2)242cm
【解析】
(1)根据图形可得5张白纸的长减去粘合部分的长度即可;
(2)根据题意x张白纸的长减去粘合部分的长度就是y的值;
(2)把x=20代入(2)得到的函数解析式即可求解.
【详解】
解:(1)由题意得,20×5-2×(5-1)=1.
则5张白纸粘合后的长度是1cm;
(2)y=20x-2(x-1),即y=17x+2.
(2)当x=20时,y=17×20+2=242.
答:实际意义是:20张白纸粘合后的长度是242cm.
本题考查了函数的关系式,正确理解纸条的长度等于白纸的长度减去粘合部分的长度是关键.
15、(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.
【解析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE=AF,即可得出结论;
(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;
(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF=60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x=3﹣即可.
【详解】
(1)解:△AEF是等边三角形,理由如下:
连接AC,如图1所示:
∵四边形ABCD是菱形,
∴AB=BC=AD,∠B=∠D,
∵∠ABC=60°,
∴∠BAD=120°,△ABC是等边三角形,
∴AC=AB,
∵点E是线段CB的中点,
∴AE⊥BC,
∴∠BAE=30°,
∵∠EAF=60°,
∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,
在△BAE和△DAF中,
,
∴△BAE≌△DAF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形;
故答案为:等边三角形;
(2)证明:连接AC,如图2所示:
同(1)得:△ABC是等边三角形,
∴∠BAC=∠ACB=60°,AB=AC,
∵∠EAF=60°,
∴∠BAE=∠CAF,
∵∠BCD=∠BAD=120°,
∴∠ACF=60°=∠B,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(ASA),
∴BE=CF;
(3)解:同(1)得:△ABC和△ACD是等边三角形,
∴AB=AC,∠BAC=∠ACB=∠ACD=60°,
∴∠ACF=120°,
∵∠ABC=60°,
∴∠ABE=120°=∠ACF,
∵∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(ASA),
∴BE=CF,AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,
∴∠AEB=45°,
∴∠CEF=∠AEF﹣∠AEB=15°,
作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:
则GE=GF,∠FGH=30°,
∴FG=2FH,GH=FH,
∵∠FCH=∠ACF﹣∠ACB=60°,
∴∠CFH=30°,
∴CF=2CH,FH=CH,
设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,
∵BC=AB=4,
∴CE=BC+BE=4+2x,
∴EH=4+x=2x+3x,
解得:x=﹣1,
∴FH=x=3﹣,
即点F到BC的距离为3﹣.
本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.
16、(1)见解析;(1)见解析.
【解析】
(1)作出A、B、C三点关于x轴的对称点,把这三点连接起来即得到△A1B1C1;
(1)作出A、B、C三点向右平移4个单位长度后的三点,再把这三点连接起来就得到了平移后的△A1B1C1
【详解】
解:(1)如图所示:
(1)如图所示:
点睛:本题考查对称和平移,对图象对称和平移的概念要清楚,并会画出图形是解决本题的关键
17、(1)详见解析;(2)是直角三角形,理由详见解析.
【解析】
(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;
(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.
【详解】
(1)∵AB∥CD,CE∥AD,
∴四边形AECD为平行四边形,∠2=∠3,
又∵AC平分∠BAD,
∴∠1=∠2,
∴∠1=∠3,
∴AD=DC,
∴平行四边形AECD是菱形;
(2)直角三角形,理由如下:
∵四边形AECD是菱形,
∴AE=EC,
∴∠2=∠4,
∵AE=EB,
∴EB=EC,
∴∠5=∠B,
又因为三角形内角和为180°,
∴∠2+∠4+∠5+∠B=180°,
∴∠ACB=∠4+∠5=90°,
∴△ACB为直角三角形.
本题考查了平行四边形的判定,菱形的判定与性质,直角三角形的判定,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.
18、OC=4.
【解析】
首先过点P作PE⊥OB于点E,利用直角三角形中30°所对边等于斜边的一半得出OE的长,再利用等腰三角形的性质求出EC的长.
【详解】
解:过点P作PE⊥OB于点E,
∵∠AOB=30°,PE⊥OB,OP=6,
∴OE=OP=3,
∵OD=2,PC=PD,
∴CE=DE=,
∴OC=4.
此题主要考查了直角三角形中30°所对边等于斜边的一半得出OD的长以及等腰三角形的性质,得出OD的长是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、<<
【解析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
【详解】
解:当x=1时,=-2×1=-2;
当x=-1时,=-2×(-1)=2;
当x=-2时,=-2×(-2)=4;
∵-2<2<4
∴<<
故答案为:<<.
本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
20、
【解析】
根据图示可知A点坐标为(-3,-1),
根据绕原点O旋转180°横纵坐标互为相反数
∴旋转后得到的坐标为(3,1),
根据平移“上加下减”原则,
∴向下平移2个单位得到的坐标为(3,-1),
21、1
【解析】
先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.
【详解】
解:∵四边形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8-3=5,
在Rt△CEF中,
设AB=x,
在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,
解得x=1,则AB=1.
故答案为:1.
本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
22、1
【解析】
由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
【详解】
解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;
甲车10:00到达B城,乙车9:00到达B城;
乙车的平均速度为:300÷(9-6)=100(km/h),
当乙车7:30时,乙车离A的距离为:100×1.5=150(km),
∴点A(7.5,150),
由图可知点B(5,0),
设甲的函数解析式为:y=kt+b,
把点A(7.5,150),B(5,0)代入y=kt+b得:
,
解得:,
∴甲的函数解析式为:y=1t-300,
当t=9时,y=1×9-300=240,
∴9点时,甲距离开A的距离为240km,
∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
故答案为:1.
本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.
23、 (3,0)
【解析】
解方程组,可得交点坐标.
【详解】
解方程组
,
得
,
所以,P(3,0)
故答案为(3,0)
本题考核知识点:求函数图象的交点. 解题关键点:解方程组求交点坐标.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)20
【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行线的性质得出∠EAO=∠FCO,根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)设菱形的边长为由题意得:,,,再利用勾股定理进行计算即可解答.
【详解】
(1)∵四边形为矩形,
∴,
∴,
又∵是的垂直平分线,
∴,,
在和中,,
∴∴
∵,∴四边形为平行四边形.
∵.∴四边形为菱形
(2)解:设菱形的边长为由题意得:,.
又∵,,∴,
∵四边形为矩形,
∴,
在中,由勾股定理得:
又∵,,,
∴,解得.
∴菱形的周长=5×4=20
此题考查线段垂直平分线的性质,菱形的判定与性质,矩形的性质,解题关键在于证明△AEO≌△CFO.
25、1﹣6.
【解析】
先根据二次根式的乘除法则和完全平方公式计算,然后合并即可.
【详解】
原式=4﹣4﹣+3+1+1
=1﹣8﹣4+4+1
=1﹣6.
故答案为:1﹣6.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
26、(1),,;(2)2;(3)
【解析】
(1)根据勾股定理可求AB、BC、AC的长度;
(2)根据三角形面积公式可求△ABC的面积;
(3)根据三角形面积公式可求边AB上的高.
【详解】
解:(1), ,.
(2)
(3)如图,作AB边上的高CD,则:
,即
解得:
即AB边上的高为
本题考查了勾股定理和三角形的面积公式的应用,解此题的关键是熟练掌握勾股定理和三角形的面积计算,难度不是很大.
题号
一
二
三
四
五
总分
得分
批阅人
2024年广东省广州市番禹区数学九上开学经典试题【含答案】: 这是一份2024年广东省广州市番禹区数学九上开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省广州市第五中学数学九上开学达标测试试题【含答案】: 这是一份2024年广东省广州市第五中学数学九上开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年扬州市梅岭中学九上数学开学经典试题【含答案】: 这是一份2024-2025学年扬州市梅岭中学九上数学开学经典试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。