


2024年广东省广州市第五中学数学九上开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形中,动点从点开始沿的路径匀速运动到点停止,在这个过程中,的面积随时间变化的图象大致是( )
A.B.
C.D.
2、(4分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为( )
A.54°B.64°C.74°D.26°
3、(4分)下列命题的逆命题是真命题的是( )
A.对顶角相等B.全等三角形的面积相等
C.两直线平行,内错角相等D.等边三角形是等腰三角形
4、(4分)下列函数中,表示y是x的正比例函数的是( ).
A.B.C.D.
5、(4分)若,则下列不等式正确的是
A.B.C.D.
6、(4分)如图,直线的解析式为,直线的解析式为,则不等式的解集是( )
A.B.C.D.
7、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4,5,6B.2,3,4C.1,1,D.
8、(4分)若a>b,则下列各式中一定成立的是( )
A.a+2<b+2B.a-2<b-2C.>D.-2a>-2b
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为____.
10、(4分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.
11、(4分)在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
12、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据总分,从高到低确定三名应聘者的排名顺序,通过计算,乙的总分是82.5,根据规定,将被录用的是__________.
13、(4分)已知点A(a,5)与点B(-3,b)关于y轴对称,则a-b= .
三、解答题(本大题共5个小题,共48分)
14、(12分)某超市销售一种水果,迸价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种牛奶的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.
(1)写出y与x之间的函数关系式和自变量x的取值范围.
(2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?
15、(8分)已知关于x的一元二次方程的两个实数根为x1、x2且x1+2x2=9,求m的值.
16、(8分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
(1)求的值;
(2)以AB为一边,在AB的左侧作正方形,求C点坐标;
(3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
17、(10分)如图,每个小正方形的边长为1,四边形的每个顶点都在格点上,且,.
(1)请在图中补齐四边形,并求其面积;
(2)判断是直角吗?请说明理由
18、(10分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若点E到CD的距离为2,CD=3,试求出矩形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形的对角线、相交于点,过点作直线分别与、相交于、两点,若,,则图中阴影部分的面积等于______.
20、(4分)一次函数的图像是由直线__________________而得.
21、(4分)方程的解是_____.
22、(4分)如图,平行四边形中,点为边上一点, 和交于点,已知的面积等于6, 的面积等于4,则四边形的面积等于__________.
23、(4分)已知在△ABC中,∠ABC和∠ACB的角平分线交于O,且∠ABC的角平分线与∠ACB的外角平分线交于P,∠OPC和∠OCP角平分线交于H,∠H=117.5°,则∠A=________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.
(1)求证:四边形ABCD是矩形;
(2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.
25、(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:
(1)本次共抽查学生 人,并将条形图补充完整;
(2)捐款金额的众数是 ,中位数是 ;
(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?
26、(12分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
(2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据三角形的面积可知当P点在AB上时,的面积随时间变大而变大,当P点在AD上时,△PBC的面积不会发生改变,当P点在CD上时,的面积随时间变大而变小.
【详解】
解:当P点在AB上时,的面积= ,则的面积随时间变大而变大;
当P点在AD上时,的面积=,则的面积不会发生改变;
当P点在CD上时,的面积=,则的面积随时间变大而变小,且函数图象的斜率应与P点在AB上时相反;
综上可得B选项的图象符合条件.
故选B.
本题主要考查三角形的面积公式,函数图象,解此题关键在于根据题意利用三角形的面积公式分段对函数图象进行分析.
2、B
【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=26°,
∴∠BCA=∠DAC=26°,
∴∠OBC=90°﹣26°=64°.
故选B.
本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
3、C
【解析】
先分别写出各命题的逆命题,再根据对顶角的概念,全等三角形的判定,平行线的判定以及等腰三角形和等边三角形的关系分别判断即可得解.
【详解】
A、逆命题为:相等的两个角是对顶角,是假命题,故本选项错误;
B、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项错误;
C、逆命题为:内错角相等,两直线平行,是真命题,故本选项正确;
D、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误.
故选C.
本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
4、B
【解析】
根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
【详解】
A、该函数不符合正比例函数的形式,故本选项错误.
B、该函数是y关于x的正比例函数,故本选项正确.
C、该函数是y关于x的一次函数,故本选项错误.
D、该函数是y2关于x的函数,故本选项错误.
故选B.
主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
5、C
【解析】
根据不等式的基本性质,逐个分析即可.
【详解】
若,则 ,,, .
故选C
本题考核知识点:不等式的性质.解题关键点:熟记不等式的基本性质.
6、D
【解析】
由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
【详解】
不等式对应的函数图象是直线在直线“下方”的那一部分,
其对应的的取值范围,构成该不等式的解集.所以,解集应为,
直线过这点,把代入易得,.
故选:D.
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
7、C
【解析】
求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A.,不能构成直角三角形,故选项错误;
B.,不能构成直角三角形,故选项错误;
C.,能构成直角三角形,故选项正确;
D.,不能构成直角三角形,故选项错误.
故选:C.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.
8、C
【解析】
已知a>b,
A. a+2>b+2,故A选项错误;
B. a−2>b−2,故B选项错误;
C. >,故C选项正确;
D. −2a<−2b,故D选项错误.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由点A的坐标利用待定系数法即可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出m的值,此题得解.
【详解】
设正比例函数的解析式为y=kx(k≠0),
∵该正比例函数图象经过点A(3,﹣6),
∴﹣6=3k,解得:k=﹣1,
∴正比例函数的解析式为y=﹣1x.
∵点B(m,﹣4)在正比例函数y=﹣1x的图象上,
∴﹣4=﹣1m,
解得:m=1.
故答案为:1.
本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
10、(0,)
【解析】
作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;
【详解】
解:作点A关于y轴的对称点A',连接A'D,
此时△ADE的周长最小值为AD+DA'的长;
∵A的坐标为(﹣4,5),D是OB的中点,
∴D(﹣2,0),
由对称可知A'(4,5),
设A'D的直线解析式为y=kx+b,
∴,
∴,
∴,
∴E(0,);
故答案为(0,);
本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.
11、或
【解析】
根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.
【详解】
解:如图:过点E作EM⊥BC,垂直为M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2,
又∵点G、H分别是OB、OD的中点,
∴GH=BD=,
当四边形EGFH为矩形时,GH=EF=,
在Rt△EMF中,FM==,
易证△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
设BF=x,则FC=6-x,由题意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案为:或.
考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.
12、乙
【解析】
由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
【详解】
∵该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,
∴甲被淘汰,
又∵丙的总分为80×60%+90×30%+73×10%=82.3(分),乙的总分是82.5,
∴根据规定,将被录取的是乙,
故答案为:乙.
本题考查了加权平均数的计算.解题的关键是熟练掌握加权平均数的定义.
13、-1
【解析】
试题分析:因为关于y轴对称的两个点的横坐标互为相反数,纵坐标不变,又点A(a,5)与点B(-3,b)关于y轴对称,所以a=3,b=5,所以a-b=3-5=-1.
考点:关于y轴对称的点的坐标特点.
三、解答题(本大题共5个小题,共48分)
14、(1)y=60+5x,(0≤x≤32,且x为偶数);(2)售价为62元时,每月销售水果的利润最大,最大利润是1920元.
【解析】
(1)根据价格每降低2元,平均每月多销售10箱,由每箱降价元,多卖,据此可以列出函数关系式;
(2)由利润=(售价−成本)×销售量−每月其他支出列出函数关系式,求出最大值.
【详解】
解:(1)根据题意知y=60+5x,(0≤x≤32,且x为偶数);
(2)设每月销售水果的利润为w,
则w=(72﹣x﹣40)(5x+60)﹣500
=﹣5x2+100x+1420
=﹣5(x﹣10)2+1920,
当x=10时,w取得最大值,最大值为1920元,
答:当售价为62元时,每月销售水果的利润最大,最大利润是1920元.
本题主要考查二次函数的应用,由利润=(售价−成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.
15、
【解析】
【分析】由根与系数的关系可得,x1x2=-m2,再根据x1+2x2=9可求出x1、x2的值,代入x1x2=-m2即可求得m的值.
【详解】由根与系数可知:
,x1x2=-m2,
解方程组,得: ,
∴x1x2=-5,即,
∴.
【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.
一元二次方程根与系数的关系:若x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,则有x1+x2=,x1x2=.
16、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.
【解析】
(1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
【详解】
(1)∵一次函数的图像经过点A(-1,0),
∴-2+b=0,
解得:b=2,
∵点B(m,4)在一次函数y=2x+2上,
∴4=2m+2,
解得:m=1,
∵B(1,4)在反比例函数图象上,
∴k1=4.
(2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
∵A(-1,0),B(1,4),
∴AF=2,BF=4,
∴∠GCB+∠CBG=90°,
∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠ABF+∠CBG=90°,
∴∠GCB=∠ABF,
又∵BC=AB,∠AFB=∠CGB=90°,
∴△CBG≌△BAF,
∴BG=AF=2,CG=BF=4,
∴GF=6,
∵在AB的左侧作正方形ABCD,
∴C点坐标为(-3,6).
(3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
∵线段A1B1的中点为点E,
∴E(n,2),
∵点和点E同时落在反比例函数的图像上,
∴k2=2n=6(-3+n)
解得:n=.
本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.
17、(1)图形见解析,四边形的面积为14.5;(2)是直角,理由见解析
【解析】
(1)根据勾股定理可得出A点位置如图,然后根据网格特点求面积;
(2)根据勾股定理可分别算出BC、CD和BD的长,再用勾股定理逆定理验证即可.
【详解】
(1)补全如下图:
S四边形ABCD=(4+5)×5÷2-4×2÷2-(1+3)×1÷2-1×4÷2=14.5
故四边形的面积为14.5
(2)是直角,理由如下:
根据勾股定理可得:;;;
∵;
∴△BCD是直角三角形,∠BCD=90°
故答案为是直角
本题考查格点图中线段长度的算法以及面积的算法,灵活运用勾股定理及其逆定理是解题关键
18、(1)见解析;(2)矩形ABCD的面积=1.
【解析】
(1)根据对边平行得四边形OCED是平行四边形,由原矩形对角线相等且互相平分得OC=OD,所以四边形OCED是菱形;
(2)根据三角形面积公式和矩形的面积等于4个△DEC的面积解答即可.
【详解】
(1)∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OD=BD,OC=AC,
∴OC=OD,
∴▱OCED是菱形;
(2)∵点E到CD的距离为2,CD=3,
∴△DEC的面积= ,
∴矩形ABCD的面积=4×3=1.
本题考查了矩形的性质,是常考题型,难度不大;需要熟练掌握矩形、菱形的边、角、对角线的关系,不能互相混淆.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质可证≌,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.
【详解】
四边形是菱形
∴OC=OA,AB∥CD,
∴
∴≌(ASA)
∴S△CFO= S△AOE
∴S△CFO+ S△EBO= S△AOB
∴S△AOB=SABCD=×
故答案为:.
此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为三角形AOB的面积为解题的关键.
20、向上平移五个单位
【解析】
根据“上加下减”即可得出答案.
【详解】
一次函数的图像是由直线向上平移五个单位得到的,
故答案为:向上平移五个单位.
本题考查一次函数图象的平移,熟记“上加下减,左加右减”的平移规律是解题的关键.
21、x=﹣1.
【解析】
把方程两边平方后求解,注意检验.
【详解】
把方程两边平方得x+2=x2,
整理得(x﹣2)(x+1)=0,
解得:x=2或﹣1,
经检验,x=﹣1是原方程的解.
故本题答案为:x=﹣1.
本题考查无理方程的求法,注意无理方程需验根.
22、11
【解析】
由△ABF的面积等于6, △BEF的面积等于4,可得EF:AF=2:3,进而证明△ADF∽△EBF,根据相似三角形的性质可得,继而求出S△ABD=15,再证明△BCD≌△DAB,从而得S△BCD=S△DAB=15,进而利用S四边形CDFE=S△BCD-S△BEF即可求得答案.
【详解】
∵△ABF的面积等于6, △BEF的面积等于4,
∴EF:AF=4:6=2:3,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴△ADF∽△EBF,
∴,
∵S△BEF=4,
∴S△ADF=9,
∴S△ABD=S△ABF+S△AFD=6+9=15,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD是公共边,
∴△BCD≌△DAB,
∴S△BCD=S△DAB=15,
∴S四边形CDFE=S△BCD-S△BEF=15-4=11,
故答案为11.
本题考查了平行四边形的性质,相似三角形的判定与性质等,熟练掌握并灵活运用相关知识是解题的关键.
23、70°
【解析】
根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A的度数.
【详解】
解:∵∠H=117.5°,
∴∠HCP+∠HPC=180°-117.5°=62.5°,
∵CH平分∠OCP,PH平分∠OPC,
∴∠OCP+∠OPC=2(∠HCP+∠HPC)= 125°,
∴∠BOC=125°,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析
【解析】
(1)根据AE2=EB•EC证明△AEB∽△CEA,即可得到∠EBA=∠EAC=90°,从而说明平行四边形ABCD是矩形;
(2)根据(1)中△AEB∽△CEA可得,再证明△EBF∽△BAF可得,结合条件AF=AC,即可证AE=BF.
【详解】
证明:(1)∵AE2=EB•EC
∴
又∵∠AEB=∠CEA
∴△AEB∽△CEA
∴∠EBA=∠EAC
而∠EAC=90°
∴∠EBA=∠EAC=90°
又∵∠EBA+∠CBA=180°
∴∠CBA=90°
而四边形ABCD是平行四边形
∴四边形ABCD是矩形
即得证.
(2)∵△AEB∽△CEA
∴即,∠EAB=∠ECA
∵四边形ABCD是矩形
∴OB=OC
∴∠OBC=∠ECA
∴∠EBF=∠OBC=∠ECA=∠EAB
即∠EBF=∠EAB
又∵∠F=∠F
∴△EBF∽△BAF
∴
∴
而AF=AC
∴BF=AE
即AE=BF得证.
本题考查的是相似三角形的判定与性质及矩形的性质,利用三角形的相似进行边与角的转化是解决本题的关键.
25、(1)10,将条形图补充完整见解析;(2)众数是10,中位数是12.1;(3)捐款20元及以上(含20元)的学生有187人.
【解析】
分析:(1)由题意可知,捐款11元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款1、11、20、21元的人数可得捐10元的人数;
(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将这组数据按照从小到大的顺序排列,处于中间位置的数就是这组数据的中位数;
(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
详解:(1)本次抽查的学生有:14÷28%=10(人),则捐款10元的有10﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:
故答案为:10;
(2)由条形图可知,捐款10元人数最多,故众数是10;
将这组数据按照从小到大的顺序排列,中间两个数据分别是10,11,所以中位数是(10+11)÷2=12.1.
故答案为:10,12.1;
(3)捐款20元及以上(含20元)的学生有:810×=187(人).
点睛:本题主要考查了条形统计图,扇形统计图,众数和中位数,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
26、(1)甲:平均数8;乙:平均数8,中位数9;(2)甲组学生的成绩比较稳定.
【解析】
(1)根据平均数和中位数的定义求解可得;
(2)根据方差的定义计算出乙的方差,再比较即可得.
【详解】
(1)甲的平均数:,
乙的平均数:,
乙的中位数:9;
(2) .
∵,
∴甲组学生的成绩比较稳定.
本题考查了求平均数,中位数与方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
题号
一
二
三
四
五
总分
得分
笔试
面试
体能
甲
83
79
90
乙
85
80
75
丙
80
90
73
平均数
众数
中位数
甲
______________
8
8
乙
______________
9
______________
2024年广东省东莞中学数学九上开学联考模拟试题【含答案】: 这是一份2024年广东省东莞中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省潮阳区华侨中学数学九上开学监测试题【含答案】: 这是一份2024年广东省潮阳区华侨中学数学九上开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。