2024年广东省肇庆市九上数学开学经典模拟试题【含答案】
展开
这是一份2024年广东省肇庆市九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中,不能构成直角三角形的是( )
A.B.C.D.
2、(4分)某班名男生参加中考体育模拟测试,跑步项目成绩如下表:
则该班男生成绩的中位数是( )
A.B.C.D.
3、(4分)二次根式、、、、、中,最简二次根式有( )个.
A.1 个B.2 个C.3 个D.4个
4、(4分)如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是( )
A.x<-2B.x>-2C.x<-4D.x>-4
5、(4分)一次函数的图象经过原点,则的值为( )
A.B.C.D.
6、(4分)在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是( )
A.测量对角线是否互相平分
B.测量两组对边是否分别相等
C.测量一组对角是否为直角
D.测量两组对边是否相等,再测量对角线是否相等
7、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.5D.6
8、(4分)函数中自变量x的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对于实数,,定义新运算“”:.如.若,则实数的值是______.
10、(4分)如图,在直角梯形ABCD中,,,,联结BD,若△BDC是等边三角形,那么梯形ABCD的面积是_________;
11、(4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)
12、(4分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有___________个.
13、(4分)如图,在中,平分,,垂足为点,交于点,为的中点,连结,,,则的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知x=-1,y=+1,求代数式x2+xy+y2的值.
15、(8分)如图1,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,,,过点的直线交矩形的边于点,且点不与点、重合,过点作,交轴于点,交轴于点.
(1)若为等腰直角三角形.
①求直线的函数解析式;
②在轴上另有一点的坐标为,请在直线和轴上分别找一点、,使 的周长最小,并求出此时点的坐标和周长的最小值.
(2)如图2,过点作交轴于点,若以、、、为顶点的四边形是平行四边形,求直线的解析式.
16、(8分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.
(1)根据信息填表:
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
17、(10分)如图,矩形中,点分别在边与上,点在对角线上,,.
求证:四边形是平行四边形.
若,,,求的长.
18、(10分).解方程:
(1) (2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____; ②_____.
20、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________
21、(4分)如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.
22、(4分)如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=___°.
23、(4分) 分解因式:9a﹣a3=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某旅游纪念品店购进一批旅游纪念品,进价为6元.第一周以每个10元的价格售出200个、第二周决定降价销售,根据市场调研,单价每降低1元,一周可比原来多售出50个,这两周一共获利1400元.
(1)设第二周每个纪念品降价元销售,则第二周售出 个纪念品(用含代数式表示);
(2)求第二周每个纪念品的售价是多少元?
25、(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
26、(12分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.
(1)求一次函数和正比例函数的解析式;
(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理的逆定理逐项计算即可.
【详解】
A. ∵32+42=52,∴能构成直角三角形;
B. ∵12+22=,∴能构成直角三角形;
C. ∵,∴不能构成直角三角形;
D. ∵12+=22,∴ 能构成直角三角形;
故选C.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
2、C
【解析】
将一组数据按照大小顺序排列,位于最中间的那个数或两个数的平均数就是该组数据的中位数,据此结合题意进一步加以计算即可.
【详解】
∵该班男生一共有18名,
∴中位数为按照大小顺序排序后第9与第10名的成绩的平均数,
∴该班男生成绩的中位数为:,
故选:C.
本题主要考查了中位数的定义,熟练掌握相关概念是解题关键.
3、C
【解析】
直接利用最简二次根式的定义判断得出结论即可.
【详解】
在二次根式、、、、、中,最简二次根式有: 、、,共3个
故选:C
本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
4、C
【解析】
以交点为分界,结合图象写出不等式kx<ax+b的解集即可.
【详解】
函数y=kx和y=ax+b的图象相交于点P(-1,-2).
由图可知,不等式kx<ax+b的解集为x<-1.
故选C.
此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.
5、B
【解析】
分析:根据一次函数的定义及函数图象经过原点的特点,求出m的值即可.
详解:∵一次函数的图象经过原点,
∴m=1.
故选B.
点睛:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b(k≠1)中,当b=1时函数图象经过原点.
6、D
【解析】
根据矩形和平行四边形的判定推出即可得答案.
【详解】
A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;
B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;
C、根据一组对角是否为直角不能得出四边形的形状,故本选项错误;
D、根据对边相等可得出四边形是平行四边形,根据对角线相等的平行四边形是矩形可得出此时四边形是矩形,故本选项正确;
故选D.
本题考查的是矩形的判定定理,矩形的判定定理有①有三个角是直角的四边形是矩形;②对角线互相平分且相等的四边形是矩形;③有一个角是直角的平行四边形是矩形.牢记这些定理是解题关键.
7、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
8、B
【解析】
试题分析:根据二次根式的意义,被开方数是非负数.所以1﹣x≥0,解得x≤1.
故选B.
考点:函数自变量的取值范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6或-1
【解析】
根据新定义列出方程即可进行求解.
【详解】
∵
∴x2-5x=6,
解得x=6或x=-1,
此题主要考查一元二次方程的解,解题的关键是根据新定义列出方程.
10、
【解析】
【分析】作DE⊥BC,先证四边形ABED是矩形,得AD=BE=3,AB=DE,再根据等边三角形性质得到BC=2BE=6,∠BDE=60°,再利用勾股定理可求得高,再运用梯形面积计算公式可求得结果.
【详解】作DE⊥BC,
因为四边形ABCD的直角梯形,,,
所以,四边形ABED是矩形,
所以,AD=BE=3,AB=DE,
又因为,三角形BCD是等边三角形,
所以,BC=2BE=6,∠BDE=60°,
所以,在直角三角形BED中,BD=BC=6,由勾股定理可得
DE=,
所以,AB=DE=
所以,梯形ABCD的面积是:
故答案为:
【点睛】本题考核知识点:直角梯形.解题关键点:作辅助线,把问题转化为直角三角形解决.
11、减小
【解析】
【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
∴0=k+3,
∴k=﹣3,
∴y的值随x的增大而减小,
故答案为减小.
【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.
12、1
【解析】
根据题意画出图形,根据勾股定理的逆定理进行判断即可.
【详解】
如图所示:
当∠C为直角顶点时,有C1,C2两点;
当∠A为直角顶点时,有C3一点;
当∠B为直角顶点时,有C4,C1两点,
综上所述,共有1个点,
故答案为1.
本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.
13、6.5
【解析】
由条件“BF平分∠ABC,AG⊥BF”可判定三角形ABG是等腰三角形(AB=GB),再由条件“E为AC的中点”,可判定DE是三角形AGB的中位线,由此可得GC=2DE,进而可求出BC的长.
【详解】
∵BF平分∠ABC,AG⊥BF,
∴△ABG是等腰三角形,
∴AB=GB=4cm,
∵BF平分∠ABC,
∴AD=DG,
∵E为AC的中点,
∴DE是△AGB的中位线,
∴DE=CG,
∴CG=2DE=5cm,
∴BC=BG+CG=4+2.5=6.5cm,
故答案为6.5
本题考查三角形的性质,解题关键在于判定三角形ABG是等腰三角形
三、解答题(本大题共5个小题,共48分)
14、1.
【解析】
根据二次根式的加减法、乘除法法则求出x+y、xy,根据完全平方公式把原式变形,代入计算即可.
【详解】
解:∵x=-1,y=+1,
∴x+y=2,xy=4,
∴x2+xy+y2=(x+y)2-xy=20-4=1.
此题考查了代数式求值的问题,解题的关键是把所求的代数式用完全平方公式进行变形.
15、(1)①直线解析式, ②N(0,),周长的最小值为;(2).
【解析】
(1)①利用矩形的性质确定A、B、C点的坐标,再利用等腰三角的性质确定,所以,确定P点的坐标,再根据A点的坐标确定确定直线AP的函数表达式. ②作G点关于y轴对称点G'(-2,0),作点G关于直线AP对称点G''(3,1)
连接G'G''交y轴于N,交直线AP于M,此时ΔGMN周长的最小.(2)过P作PM⊥AD于M,先根据等腰三角形三线合一的性质证明DM=MA ,再根据角角边定理证明ΔODE≌ΔMDP,根据全等三角形的性质求出点P、D的坐标,代入直线解析式得k=2,b=-2,所以直线PE的解析式为y=2x-2.
【详解】
(1)①∵矩形,
∴,
∵为等腰直角三角形
∴
∵
∴
∵
∴
∴
∴
设直线解析式,过点,点
∴ ∴
∴直线解析式
②作点关于轴对称点,作点关于直线对称点
连接交轴于,交直线于,此时周长的最小.
∵
∴直线解析式
当时,,∴
∵
∴周长的最小值为
(2)如图:作于
∵ ∴且
∴,且 ∴
∵四边形是平行四边形 ∴
又∵
∴
∴ ∴
∵ ∴
∴
设直线的解析式
∴
∴直线解析式
本题主要考查矩形的性质、等腰三角形的性质、角边角定理以及一次函数的应用.
16、 (1) ;;;(2)该企业每天生产甲、乙产品可获得总利润是元.
【解析】
(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品,此问得解;
(2)由总利润=每件产品的利润×生产数量结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
解:(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品.
故答案为:;;;
(2)依题意,得:15×2(65-x)-(120-2x)•x=650,
整理,得:x2-75x+650=0,
解得:x1=10,x2=65(不合题意,舍去),
∴15×2(65-x)+(120-2x)•x=2650,
答:该企业每天生产甲、乙产品可获得总利润是2650元.
本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.
17、(1)证明见详解;(2)1
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
解:(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,
∴△AEG≌△CFH,
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)如图,连接EF,AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF=AE,
设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=1,
∴AE=1.
此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
18、(1),;(2),
【解析】
(1)先移项,然后用因式分解法求解即可;
(2)直接用求根公式法求解即可.
【详解】
(1)
或
,
(2),,
,
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3,4,5 6,8,10
【解析】
根据勾股数的定义即可得出答案.
【详解】
∵3、4、5是三个正整数,
且满足,
∴3、4、5是一组勾股数;
同理,6、8、10也是一组勾股数.
故答案为:①3,4,5;②6,8,10.
本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
20、;
【解析】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.
【详解】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.
故答案为
本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k
相关试卷
这是一份2024年广东省肇庆市九上数学开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省深圳市坪山区数学九上开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省深圳市龙华区九级数学九上开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。