|试卷下载
搜索
    上传资料 赚现金
    2024年广东省广州市番禹区数学九上开学经典试题【含答案】
    立即下载
    加入资料篮
    2024年广东省广州市番禹区数学九上开学经典试题【含答案】01
    2024年广东省广州市番禹区数学九上开学经典试题【含答案】02
    2024年广东省广州市番禹区数学九上开学经典试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广东省广州市番禹区数学九上开学经典试题【含答案】

    展开
    这是一份2024年广东省广州市番禹区数学九上开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)要使二次根式有意义,则的取值范围是( )
    A.B.C.D.
    2、(4分)下列函数中,随的增大而减少的函数是( )
    A.B.C.D.
    3、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    4、(4分)已知分式方程,去分母后得( )
    A.B.
    C.D.
    5、(4分)关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC的腰长为( )
    A.3B.6C.6或9D.3或6
    6、(4分)在直角三角形中,若两条直角边的长分别是1cm,2cm,则斜边的长( )cm.
    A.3B.C.D.或
    7、(4分)下列各式由左边到右边的变形中,属于分解因式的是
    A.a(x+y)="ax+ay"
    B.x2﹣4x+4=x(x﹣4)+4
    C.10x2﹣5x=5x(2x﹣1)
    D.x2﹣16+6x=(x+4)(x﹣4)+6x
    8、(4分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )
    A.8cmB.6cmC.4cmD.2cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算:×=____________.
    10、(4分)若正比例函数 y k2x 的图象经过点 A1,  3 , 则k的值是_____.
    11、(4分)如图是一个棱长为6的正方体盒子,一只蚂蚁从棱上的中点出发,沿盒的表面爬到棱上后,接着又沿盒子的表面爬到盒底的处.那么,整个爬行中,蚂蚁爬行的最短路程为__________.
    12、(4分)若分式的值为零,则x的值为________.
    13、(4分)如图,在轴的正半轴上,自点开始依次间隔相等的距离取点,,,,,,分别过这些点作轴的垂线,与反比例函数的图象交于点,,,,,,作,,,,,垂足分别为,,,,,,连结,,,,,得到一组,,,,,它们的面积分别记为,,,,,则_________,_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知直线y1经过点A(-1,0)与点B(2.3),另一条直线y2经过点B,且与x轴交于点P(m.0).
    (1)求直线y1的解析式;
    (2)若三角形ABP的面积为,求m的值.
    15、(8分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.
    (1)求证:EF∥AC;
    (2)求∠BEF大小;
    16、(8分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
    (1)D,F两点间的距离是 ;
    (2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
    (3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
    (4)连结PG,当PG∥AB时,请直接写出t的值.
    17、(10分)如图,在6×6的方格图中,每个小方格的边长都是为1,请在给定的网格中按下列要求画出图形.
    (1)画出以A点出发,另一端点在格点(即小正方形的顶点)上,且长度为 的一条线段.
    (2)画出一个以题(1)中所画线段为腰的等腰三角形.
    18、(10分)如图,在△ABC中,AB=8,AC=1.点D在边AB上,AD=4.2.△ABC的角平分线AE交CD于点F.
    (1)求证:△ACD∽△ABC;
    (2)求的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.
    20、(4分)两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m
    21、(4分)若,则=_____.
    22、(4分)某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为______米.
    23、(4分)如图,在矩形中,对角线与相交于点,,,则的长为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简,再求值:,其中.
    25、(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
    (1) 这个八年级的学生总数在什么范围内?
    (2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
    26、(12分)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据二次根式有意义的条件进行求解即可.
    【详解】
    ∵二次根式有意义

    解得
    故答案为:D.
    本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.
    2、D
    【解析】
    根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.
    【详解】
    A、B、C选项中的函数解析式k值都是正数,y随x的增大而增大,
    D选项y=-2x+8中,k=-2<0,y随x的增大而减少.
    故选D.
    本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    3、D
    【解析】
    根据轴对称图形和中心对称图形的概念识别即可.(轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形是指在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
    【详解】
    解:A 选项不是轴对称图形,是中心对称图形;
    B 选项是轴对称图形,不是中心对称图形;
    C 选项是轴对称图形,不是中心对称图形;
    D 选项既是轴对称图形,又是中心对称图形,
    故选D.
    本题主要考查轴对称图形和中心对称图形的识别,这是重点知识,必须熟练掌握,关键在于根据概念判断.
    4、A
    【解析】
    两边都乘以最简公分母(x+2)(x-2)即可得出正确选项.
    【详解】
    解:方程两边都乘以最简公分母(x+2)(x-2),
    得:x(x+2)-1=(x+2)(x-2),
    即x(x+2)-1=x2-4,
    故选:A.
    本题主要考查解分式方程,准确找到最简公分母是解题的关键.
    5、B
    【解析】
    先把x=1代入方程x2-mx+2m=0求出m得到原方程为x2-9x+18=0,利用因式分解法解方程得到x1=1,x2=6,然后根据等腰三角形三边的关系和等腰三角形的确定等腰△ABC的腰和底边长.
    【详解】
    解:把x=1代入方程x2-mx+2m=0得9-1m+2m=0,解得m=9,
    则原方程化为x2-9x+18=0,
    (x-1)(x-6)=0,
    所以x1=1,x2=6,
    所以等腰△ABC的腰长为6,底边长为1.
    故选:B.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.
    6、B
    【解析】
    分析:由于1cm和2cm是直角三角形的两条边,可根据勾股定理求出斜边的长.
    详解:∵在直角三角形中,若两条直角边的长分别是1cm,2cm,∴斜边长==(cm).
    故选B.
    点睛:本题考查了勾股定理,由于本题较简单,直接利用勾股定理解答即可.
    7、C
    【解析】
    分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解:
    A、是多项式乘法,故选项错误;
    B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故选项错误;
    C、提公因式法,故选项正确;
    D、右边不是积的形式,故选项错误.
    故选C.
    8、C
    【解析】
    试题分析:解:∵四边形ABCD是平行四边形,
    ∴BC=AD=12cm,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BEA=∠BAE,
    ∴BE=AB=8cm,
    ∴CE=BC﹣BE=4cm;
    故答案为C.
    考点:平行四边形的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    直接利用二次根式乘法运算法则化简得出答案.
    【详解】
    =.
    故答案为.
    此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键.
    10、-1
    【解析】
    把A1,  3点代入正比例函数y k2x中即可求出k值.
    【详解】
    ∵正比例函数 y k2x 的图象经过点 A1,  3,
    ∴,解得:k=-1.
    故答案为:-1.
    本题考查了正比例函数上点的特征,正确理解正比例函数上点的特征是解题的关键.
    11、15
    【解析】
    根据题意,先将正方体展开,再根据两点之间线段最短求解.
    【详解】
    将上面翻折起来,将右侧面展开,如图,连接,依题意得:
    ,,
    ∴.
    故答案:15
    此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.
    12、1
    【解析】
    试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.
    考点:分式的值为零的条件.
    13、
    【解析】
    设,根据反比例函数图象上点的坐标特征和三角形面积公式得到,,,依次可得,然后代入计算即可.
    【详解】
    解:设,
    则,,,,
    ,,,


    故答案为:,.
    本题考查了反比例函数图像上点的坐标特征和三角形面积公式,求出三角形的面积并找到规律是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) y1=x+1;(2)m=1或m=-2.
    【解析】
    (1)设直线y1的解析式为y=kx+b,由题意列出方程组求解;
    (2)分两种情形,即点P在A的左侧和右侧分别求出P点坐标,即可得到结论.
    【详解】
    (1)设直线y1的解析式为y=kx+b.
    ∵直线y1经过点A(﹣1,0)与点B(2,2),∴,解得:.
    所以直线y1的解析式为y=x+1.
    (2)当点P在点A的右侧时,AP=m﹣(﹣1)=m+1,有S△APB(m+1)×2=2,解得:m=1.
    此时点P的坐标为(1,0).
    当点P在点A的左侧时,AP=﹣1﹣m,有S△APB(﹣m﹣1)×2=2,解得:m=﹣2,此时,点P的坐标为(﹣2,0).
    综上所述:m的值为1或﹣2.
    本题考查待定系数法求函数解析式;利用坐标求三角形的面积.
    15、(1)、证明过程见解析;(2)、60°.
    【解析】
    试题分析:根据正方形的性质得出AD∥BF,结合AE=CF可得四边形ACFE是平行四边形,从而得出EF∥AC;连接BG,根据EF∥AC可得∠F=∠ACB=45°,根据∠GCF=90°可得∠CGF=∠F=45°可得CG=CF,根据AE=CF可得AE=CG,从而得出△BAE≌△BCG,即BE=EG,得出△BEG为等边三角形,得出∠BEF的度数.
    试题解析:(1)∵四边形ABCD是正方形 ∴AD∥BF ∵AE="CF" ∴四边形ACFE是平行四边形 ∴EF∥AC
    (2)连接BG ∵EF∥AC, ∴∠F=∠ACB=45°,
    ∵∠GCF=90°, ∴∠CGF=∠F=45°, ∴CG=CF,
    ∵AE=CF, ∴AE=CG, ∴△BAE≌△BCG(SAS)
    ∴BE=BG, ∵BE=EG, ∴△BEG是等边三角形,
    ∴∠BEF=60°
    考点:平行四边形的判定、矩形的性质、三角形全等的应用.
    16、(1)25;(2)能,t=;(3),;(4)和
    【解析】
    (1)根据中位线的性质求解即可;
    (2)能,连结,过点作于点,由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分,此时,通过证明,可得,再根据即求出t的值;
    (3)分两种情况:①当点在上时;②当点在上时,根据相似的性质、线段的和差关系列出方程求解即可;
    (4)(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.
    【详解】
    解:(1)∵D, F分别是AC, BC的中点
    ∴DF是△ABC的中位线

    (2)能.
    连结,过点作于点.
    由四边形为矩形,可知过的中点时,
    把矩形分为面积相等的两部分.
    (注:可利用全等三角形借助割补法或用中心对称等方法说明),
    此时.







    ∵F是BC的中点

    ∴.
    故.
    (3)①当点在上时,如图1.
    ,,
    由,得.
    ∴.
    ②当点在上时,如图2.
    已知,从而,
    由,,得.
    解得.
    (4)和.
    (注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.)
    本题考查了三角形的动点问题,掌握中位线的性质、相似三角形的性质以及判定定理、平行线的性质以及判定定理、解一元一次方程的方法是解题的关键.
    17、(1)作图见解析;(2)作图见解析.
    【解析】
    (1)直接利用勾股定理结合网格得出答案;
    (2)利用等腰三角形的定义得出符合题意的一个答案.
    【详解】
    (1)如图所示:AB即为所求;
    (2)如图所示:△ABC即为所求.
    此题主要考查了应用设计与作图,正确应用网格是解题关键.
    18、(1)证明见解析;(2).
    【解析】
    (1)由AB,AC,AD的长可得出,结合∠CAD=∠BAC即可证出△ACD∽△ABC;
    (2)利用相似三角形的性质可得出∠ACD=∠B,由AE平分∠BAC可得出∠CAF=BAE,进而可得出△ACF∽△BAE,再利用相似三角形的性质即可求出的值.
    【详解】
    (1)证明:∵AB=8,AC=1,AD=4.2,
    ∴.
    又∵∠CAD=∠BAC,
    ∴△ACD∽△ABC;
    (2)∵△ACD∽△ABC,
    ∴∠ACD=∠B.
    ∵AE平分∠BAC,
    ∴∠CAF=BAE,
    ∴△ACF∽△BAE,
    ∴.
    本题考查了相似三角形的判定与性质以及角平分线的定义,解题的关键是:(1)利用“两边对应成比例且夹角相等,两个三角形相似”找出△ACD∽△ABC;(2)利用“两角对应相等,两个三角形相似”找出△ACF∽△BAE.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.
    【详解】
    解:∵直线y=x+1和y轴交于A1,
    ∴A1的坐标(0,1),即OA1=1,
    ∵四边形C1OA1B1是正方形,
    ∴OC1=OA1=1,
    把x=1代入y=x+1得:y=2,
    ∴A2的坐标为(1,2),
    同理,A3的坐标为(3,4),

    ∴An的坐标为(2n-1-1,2n-1),
    ∴的坐标是,
    故答案为:.
    本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.
    20、
    【解析】
    两人从同一地点同时出发,一人以30m/min的速度向北直行
    【详解】
    解:设10min后,OA=30×10=300(m),
    OB=30×10=300(m),
    甲乙两人相距AB=(m).
    故答案为:.
    本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.
    21、
    【解析】
    设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.
    【详解】
    解:设=m,
    ∴x=3m,y=4m,z=5m,
    代入原式得:.
    故答案为.
    本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.
    22、1×10-1
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:=1×10-1.
    故答案为:1×10-1.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    23、
    【解析】
    根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OA=OB=OC=OD, ∠BAD=90°,

    ∴△AOB是等边三角形,
    ∴OB=AB=1,
    ∴BD=2BO=2,
    在Rt△BAD中,
    故答案为
    考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、;
    【解析】
    首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,然后进行乘除法计算,最后将a的值代入化简后的式子进行计算.
    【详解】
    解:原式=
    当a=时,原式=.
    本题考查分式的化简求值.
    25、(1)240人<八年级学生数≤300人
    (2)这个学校八年级学生有300人.
    【解析】
    答:八年级学生总数为人
    (1)关系式为:学生数≤300,学生数+60>300列式求值即可;
    (2)批发价为每支x元,则零售价为每支元,列方程求解
    【详解】
    解:(1)有已知,240人<总数≤300人;
    (2)批发价为每支x元,则零售价为每支元
    可列方程
    求得x=
    经检验x=符合题意
    学生总数为人
    26、水的深度是12尺,芦苇的长度是13尺.
    【解析】
    找到题中的直角三角形,设水深为x尺,根据勾股定理解答.
    【详解】
    解:设水的深度为x尺,如下图,
    根据题意,芦苇长:OB=OA=(x+1)尺,
    在Rt△OCB中,
    52+x2=(x+1)2
    解得:x=12,
    x+1=13
    所以,水的深度是12尺,芦苇的长度是13尺.
    本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.
    题号





    总分
    得分
    相关试卷

    2023-2024学年广东省广州市番禹区数学九上期末检测试题含答案: 这是一份2023-2024学年广东省广州市番禹区数学九上期末检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中等内容,欢迎下载使用。

    2023-2024学年广东省广州市番禹区八上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年广东省广州市番禹区八上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,《九章算术》中记载等内容,欢迎下载使用。

    2022-2023学年广东省广州市番禹区数学七下期末统考模拟试题含答案: 这是一份2022-2023学年广东省广州市番禹区数学七下期末统考模拟试题含答案,共6页。试卷主要包含了在下列说法中等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map