- 苏科版2024-2025学九年级数学上册突破提升专题1.1一元二次方程【十大题型】学案(学生版+解析) 学案 0 次下载
- 苏科版2024-2025学九年级数学上册突破提升专题1.8利用一元二次方程解决几何动态问题【七大题型】学案(学生版+解析) 学案 0 次下载
- 苏科版2024-2025学九年级数学上册突破提升专题1.2一元二次方程的解法【十大题型】学案(学生版+解析) 学案 0 次下载
- 苏科版2024-2025学九年级数学上册突破提升专题1.4一元二次方程的根与系数的关系【十大题型】学案(学生版+解析) 学案 0 次下载
- 苏科版2024-2025学九年级数学上册突破提升专题1.5用一元二次方程解决问题【十大题型】学案(学生版+解析) 学案 0 次下载
初中数学苏科版(2024)九年级上册1.1 一元二次方程学案
展开考试时间:60分钟;满分:100分
姓名:___________班级:___________考号:___________
考卷信息:
本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)(23-24九年级·广东汕头·期中)下列方程中,是一元二次方程的是( )
A.x+2y=1B.x2−2xy=0C.x2+12x=3D.x2−2x+3=0
2.(3分)(23-24·河南平顶山·一模)若关于x的一元二次方程m+2x2+x+m2−4=0的一个根为0,则m的值为( )
A.−2B.0C.2D.−2或2
3.(3分)(23-24九年级·辽宁铁岭·期中)用配方法解一元二次方程x2−6x+2=0时,下列变形正确的是( )
A.x−32=7B.x−32=11C.x+32=7D.x−32=1
4.(3分)(23-24九年级·广西梧州·期中)关于x的一元二次方程x2+mx−2(m+3)=0的根情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.实数根的个数由m的值确定
5.(3分)(23-24九年级·安徽合肥·期中)关于x的方程x2+x2+2x2+2x−3=0,则x2+x的值是( )
A.−3B.1C.−3或1D.3或−1
6.(3分)(23-24九年级·广西梧州·期中)已知关于x的一元二次方程x2+3x+m+2=0的两个实数根是x1,x2,且x1=2x2,则m的值是( )
A.0B.2C.−1D.1
7.(3分)(23-24九年级·浙江温州·期中)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书.据统计该阅览室2021年图书借阅总量是7500本,2023年图书借阅总量是10800本.设该社区阅览室的图书借阅总量从2021年至2023年的年平均增长率为x,则根据题意可列方程为( )
A.75001+x=10800B.75001+x2=10800
C.75001+1+x2=10800D.75001+1+x+1+x2=10800
18.(6分)(23-24九年级·四川乐山·期中)已知关于x的方程x2+2k−3x+k2+1=0.
(1)当k是为何值时,此方程有实数根;
(2)若此方程的两个实数根x1、x2满足:|x2|+|x1|=4,求k的值.
15.(8分)(23-24九年级·黑龙江哈尔滨·期中)如图所示,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED的边长,易知AE=2c,这时我们把关于x的形如ax2+2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:
(1)试判断方程x2+2x+1=0是否为“勾系一元二次方程”.
(2)若x=−1是“勾系一元二次方程”ax2+2cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC的面积.
20.(8分)(23-24九年级·重庆忠县·期末)阅读下面材料,解决后面的问题:
我们知道,如果实数a,b满足a2+b2=0,那么a=b=0.利用这种思路,对于m2−2mn+2n2−6n+5=0,我们可以求出m,n的值.
解法是:∵m2−2mn+2n2−6n+5=0,∴m2−2mn+n2+n2−6n+5=0,
即m−n2+n−32=0,∴m−n=0,n−3=0,∴m=n=3.
根据这样的解法,完成:
(1)若x2+y2+8x−2y+17=0,求x+3y的值;
(2)若等腰△ABC的两边长a,b满足a2+b2=6a+8b−25,求该△ABC的周长;
(3)若正整数a,b,c满足不等式a2+b2+c2+11<3a+ab+6c,求a+b+c的值.
21.(8分)(23-24九年级·重庆·期末)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某社区图书室积极推广全社区阅读活动,决定下半年逐月加大图书购置经费的投入.其中七月计划购买甲与乙两种书籍共100本.已知书籍甲的单价是68元,书籍乙的单价是50元,共花费5720元.
(1)请问七月计划购买甲、乙书籍各多少本?
(2)经过比较,图书室工作人员最终决定在新星书城购买书籍甲和乙.书籍甲的单价减少了m元,购买数量增加了52m本.书籍乙的单价不变,购买甲、乙书籍的总数量也不变,总费用比原计划减少了10m元,请求出m的值.
22.(8分)(23-24九年级·山东济南·期末)如图,在△ABC中,∠B=50°,AB=6cm,BC=8cm,点P从A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.点P,Q同时出发,当点Q运动到点C时,两点停止运动,设运动时间t秒.
(1)填空:BQ=______cm,PB=______cm;(用含t的代数式表示);
(2)当t为几秒时,PQ的长度等于42cm;
(3)是否存在某一时刻t,使四边形APQC的面积等于△ABC面积的23?如果存在,求出t的值,如果不存在,请说明理由.
23.(8分)(23-24九年级·福建泉州·期中)阅读材料,解答问题:
已知实数m,n满足m2−m−1=0,n2−n−1=0,且m≠n,则m,n是方程x2−x−1=0的两个不相等的实数根,由根与系数的关系可知m+n=1,mn=−1.
根据上述材料,解决以下问题:
(1)直接应用:
已知实数a,b满足:a2−5a+1=0,b2−5b+1=0且a≠b,则a+b=______,ab=______;
(2)间接应用:
已知实数m,n满足:2m2−7m+1=0,n2−7n+2=0,且mn≠1,求2mn+2mn+3n+1的值.
(3)拓展应用:
已知实数p,q满足:p2−2p=3−t,12q2−q=123−t且p≠q,求q2+12p+4−t的取值范围.
第1章 一元二次方程单元提升卷
【苏科版】
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)(23-24九年级·广东汕头·期中)下列方程中,是一元二次方程的是( )
A.x+2y=1B.x2−2xy=0C.x2+12x=3D.x2−2x+3=0
【答案】B
【分析】本题考查了一元二次方程的定义,根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程,即可判断求解,掌握一元二次方程的定义是解题的关键.
【详解】解:A、方程x+2y=1,未知数的最高次数是1,不是一元二次方程,不合题意;
B、方程x2−2xy=0,含有两个未知数,不是一元二次方程,不合题意;
C、方程x2+12x=3,不是整式方程,不是一元二次方程,不合题意;
D、方程x2−2x+3=0,是一元二次方程,符合题意;
故选:D.
2.(3分)(23-24·河南平顶山·一模)若关于x的一元二次方程m+2x2+x+m2−4=0的一个根为0,则m的值为( )
A.−2B.0C.2D.−2或2
【答案】C
【分析】本题考查了一元二次方程的定义和一元二次方程的解,把x=0代入一元二次方程可得m=±2,又根据m+2≠0可得m≠−2,进而求解,掌握一元二次方程的定义和一元二次方程的解的定义是解题的关键.
【详解】解:∵关于x的一元二次方程m+2x2+x+m2−4=0的一个根为0,
∴m2−4=0,
∴m=±2,
又∵m+2≠0,
∴m≠−2,
∴m=2,
故选:C.
3.(3分)(23-24九年级·辽宁铁岭·期中)用配方法解一元二次方程x2−6x+2=0时,下列变形正确的是( )
A.x−32=7B.x−32=11C.x+32=7D.x−32=1
【答案】C
【分析】本题主要考查用配方法解一元二次方程,将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得.
【详解】解:∵x2−6x+2=0,
∴x2−6x=−2,
∴x2−6x+5=−2+5,即x−32=7,
故选:A.
4.(3分)(23-24九年级·广西梧州·期中)关于x的一元二次方程x2+mx−2(m+3)=0的根情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.实数根的个数由m的值确定
【答案】A
【分析】本题考查了一元二次方程根的判别式,配方法,熟记判别式并灵活应用是解题关键.先确定a、b、c的值,计算Δ=b2−4ac的值进行判断即可求解.
【详解】由题意可知:a=1,b=m,c=−2(m+3)=−2m−6,
∴Δ=b2−4ac=m2−4×1×(−2m−6)=(m+4)2+8≥8
∴方程有两个不相等的实数根.
故选:B.
5.(3分)(23-24九年级·安徽合肥·期中)关于x的方程x2+x2+2x2+2x−3=0,则x2+x的值是( )
A.−3B.1C.−3或1D.3或−1
【答案】A
【分析】本题考查解一元二次方程,熟练掌握用换元法解方程是解题的关键.
设x2+x=t,则此方程可化为t2+2t−3=0,然后用因式分解法求解即可.
【详解】解:设x2+x=t,则此方程可化为t2+2t−3=0,
∴t−1t+3=0,
∴t−1=0或t+3=0,
解得t1=1,t2=−3,
∴x2+x的值是1或−3.
∵x2+x=−3,即x2+x+3=0,
Δ=12−4×1×3=−11<0
方程无解,故x2+x=−3舍去,
∴x2+x的值是1,
故选:B.
6.(3分)(23-24九年级·广西梧州·期中)已知关于x的一元二次方程x2+3x+m+2=0的两个实数根是x1,x2,且x1=2x2,则m的值是( )
A.0B.2C.−1D.1
【答案】C
【分析】本题主要考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.先利用根与系数的关系得到x1+x2=−3,x1·x2=m+2,再根据x1=2x2,求出x1=−2,x2=−1,即可求解.
【详解】解:∵关于x的一元二次方程x2+3x+m+2=0的两个实数根是x1,x2,
∴ x1+x2=−3,x1·x2=m+2,
∵ x1=2x2,
∴ 2x2+x2=−3,
解得:x2=−1,
∴ x1=2x2=−2,
∴ −2×−1=m+2,
解得:m=0,
故选:A.
7.(3分)(23-24九年级·浙江温州·期中)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书.据统计该阅览室2021年图书借阅总量是7500本,2023年图书借阅总量是10800本.设该社区阅览室的图书借阅总量从2021年至2023年的年平均增长率为x,则根据题意可列方程为( )
A.75001+x=10800B.75001+x2=10800
C.75001+1+x2=10800D.75001+1+x+1+x2=10800
【答案】A
【分析】本题考查了列一元二次方程解实际问题的运用,解答时根据增长率问题的数量关系列出表示经过两次增长以后图书馆有书的本数的代数式是关键.
经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书75001+x2本,即可列方程求解
【详解】解:根据题意,得75001+x2=10800,
故选:B.
8.(3分)(23-24九年级·浙江温州·期中)已知m是方程ax2+c=0和方程cx2+a=0的一个实数根,则方程ax2+2ax+c=0一定有实数根( )
A.−1B.2−1C.−mD.m
【答案】A
【分析】本题考查了一元二次方程的解,公式法解一元二次方程.熟练掌握一元二次方程的解,公式法解一元二次方程是解题的关键.
由题意知,am2+c=0,cm2+a=0,则am2+c+cm2+a=0,即a+cm2+1=0,可求c=−a,则ax2+2ax−a=0,即x2+2x−1=0,公式法解方程,然后作答即可.
【详解】解:由题意知,am2+c=0,cm2+a=0,
∴am2+c+cm2+a=0,即a+cm2+1=0,
解得,a+c=0,即c=−a,
∴ax2+2ax−a=0,即x2+2x−1=0,
解得,x1=2−1,x2=−2−1,
∴方程ax2+2ax+c=0一定有实数根2−1,
故选:B.
5.(3分)(23-24九年级·贵州贵阳·期中)定义:关于x的一元二次方程:a1x−m2+n=0与a2x−m2+n=0,称为“同族二次方程”.如2x−32+4=0与3x−32+4=0是“同族二次方程”.若关于x的一元二次方程:2x−12+1=0与a+2x2+b−4x+8=0是“同族二次方程”.则代数式−ax2+bx+2015的最大值是( )
A.2024B.2023C.2022D.2021
【答案】C
【分析】本题主要考查了配方法的应用,解二元一次方程组,先将a+2x2+b−4x+8=0变形为a+2x−12+2a+bx+6−a=0,再利用“同族二次方程”定义列出关系式,得到a与b的值,进而利用非负数的性质确定代数式的最小值.理解“同族二次方程”的定义是解题的关键.
【详解】解:∵ a+2x2+b−4x+8=0,
∴a+2x2−2x+1+2a+2x−a+2+b−4x+8=0,
即a+2x−12+2a+bx+6−a=0,
∵2x−12+1=0与a+2x2+b−4x+8=0是“同族二次方程”,
∴2x−12+1=0与a+2x−12+2a+bx+6−a=0是“同族二次方程”,
∴2a+b=0,6−a=1,
解得:a=5,b=−10,
则−ax2+bx+2015
=−5x2−10x+2015
=−5x2−2x+1+5+2015
=−5x−12+2024≤2024,
当x=1时,−ax2+bx+2015取最大值2024,
10.(3分)(23-24九年级·河北石家庄·期中)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m−1)2+(n−1)2≥2;③−1≤2m−2n≤1,其中正确结论的个数是( )
A.0个B.1个C.2个D.3个
【答案】B
【分析】设方程x2+2mx+2n=0的两根为x1、x2,方程y2+2ny+2m=0同的两根为y1、y2.①根据方程解的情况可得出x1•x2=2n>0、y1•y2=2m>0,结合根与系数的关系可得出x1+x2=-2m、y1+y2=-2n,进而得出这两个方程的根都是负根,①正确;②由方程有两个实数根结合根的判别式即可得出m2-2n≥0、n2-2m≥0,将(m-1)2+(n-1)2展开代入即可得出②正确;③根据根与系数的关系可得出2m-2n=(y1+1)(y2+1)-1、2n-2m=(x1+1)(x2+1)-1,结合x1、x2、y1、y2均为负整数即可得出-1≤2m-2n≤1,③成立.综上即可得出结论.
【详解】设方程x2+2mx+2n=0的两根为x1、x2,方程y2+2ny+2m=0同的两根为y1、y2.
①∵关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,
∴x1•x2=2n>0,y1•y2=2m>0,
∵x1+x2=-2m,y1+y2=-2n,
∴这两个方程的根都是负根,①正确;
②∵关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,
∴4m2-8n≥0,4n2-8m≥0,
∴m2-2n≥0,n2-2m≥0,
∴(m-1)2+(n-1)2=m2-2n+1+n2-2m+1≥2,②正确;
③∵y1•y2=2m,y1+y2=-2n,
∴2m-2n=y1•y2+y1+y2=(y1+1)(y2+1)-1,
∵y1、y2均为负整数,
∴(y1+1)(y2+1)≥0,
∴2m-2n≥-1.
∵x1•x2=2n,x1+x2=-2m,
∴2n-2m=x1•x2+x1+x2=(x1+1)(x2+1)-1,
∵x1、x2均为负整数,
∴(x1+1)(x2+1)≥0,
∴2 n -2 m≥-1,即2m-2n≤1.
∴-1≤2m-2n≤1,③成立.
综上所述:成立的结论有①②③.
【点睛】本题主要考查了根与系数的关系及一元二次方程的根的判别式,根据不同结论灵活运用根与系数的关系是解决本题的关键,也是解决问题的难点.
二.填空题(共6小题,满分18分,每小题3分)
11.(3分)(23-24九年级·天津西青·期中)将一元二次方程xx−1=−1化成ax2+bx+c=0a>0的形式则a+b+c= .
【答案】1
【分析】直接利用一元二次方程的一般形式分析得出答案.
【详解】解:将一元二次方程xx−1=−1化成一般形式ax2+bx+c=0(a>0)之后,变为x2−x+1=0,
故a=1,b=−1,c=1,
∴a+b+c=1−1+1=1,
故答案为:1.
【点睛】此题主要考查了一元二次方程的一般形式,正确把握定义是解题关键.
12.(3分)(23-24九年级·山东淄博·期中)已知α、β是方程x2−2x−2024=0的两个实数根,则a2−4a−2β−2的值是 .
【答案】2018
【分析】本题考查了一元二次方程的解、一元二次方程根与系数的关系,由题意得出α2−2α=2024,α+β=2,将a2−4a−2β−2变形为α2−2α−2α+β−2,整体代数计算即可得出答案,熟练掌握一元二次方程根与系数的关系是解此题的关键.
【详解】解:∵α、β是方程x2−2x−2024=0的两个实数根,
∴α2−2α−2024=0,α+β=2,
∴α2−2α=2024,
∴a2−4a−2β−2=α2−2α−2α+β−2=2024−2×2−2=2018,
故答案为:2018.
13.(3分)(23-24九年级·北京·期中)方程x2−8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是 .
【答案】34或4
【分析】本题考查了解一元二次方程和勾股定理,能求出符合的所有情况是解此题的关键.
先求出方程的解,再分为两种情况,根据勾股定理求出第三边即可.
【详解】解:解方程x2−8x+15=0得:x=3或5,
即直角三角形的两边为3或5,
当5为直角边时,第三边为:32+52=34;
当5为斜边时,第三边为:52−32=4;
故答案为:34或4.
14.(3分)(23-24九年级·浙江温州·期中)在解方程x2+mx−n=0时,小王看错了m,解得方程的根为6与−1;小李看错了n,解得方程的根为2与−7,则原方程的解为 .
【答案】x1=1,x2=−6
【分析】本题考查一元二次方程根与系数关系,能够根据根与系数的关系求得没有看错的未知字母的值是解题的关键.
首先根据根与系数的关系求得m,n的值,再进一步解方程即可.
【详解】解:根据根与系数关系得
−n=6×−1,−m=2−7,
解得:n=6,m=5,
∴原方程为x2+5x−6=0,
x−1x+6=0,
x−1=0或x+6=0,
∴x1=1,x2=−6,
故答案为:x1=1,x2=−6.
15.(3分)(23-24九年级·吉林·期中)嘉琪准备完成题目:解一元二次方程x2−6x+□=0.若“□”表示一个字母,且一元二次方程x2−6x+□=0有实数根,则“□”的最大值为 .
【答案】5
【分析】此题考查了根的判别式,根据根的情况确定范围,设□中为m,根据判别式的意义得到Δ=b2−4ac,然后解不等式求出m后找出最大整数即可,解题的关键是熟练掌握一元二次方程ax2+bx+c=0a≠0根的判别式Δ=b2−4ac,当方程有两个不相等的实数根时,Δ>0;当方程有两个相等的实数根时,Δ=0;当方程没有实数根时,Δ<0.
【详解】解:设□中为m,
∵一元二次方程x2−6x+□=0有实数根,
∴Δ=−62−4×1×m=36−4m≥0,
解得:m≤5,
∴“□”的最大值为5,
故答案为:5.
16.(3分)(23-24九年级·江苏宿迁·期中)对于实数a、b,定义运算“*”; a∗b=a2−aba≤bb2−aba>b,关于x的方程2x∗x−1=t+3恰好有三个不相等的实数根,则t的取值范围是 .
【答案】−3
【分析】根据新定义的运算,分两种情况得出两个关于x的一元二次方程,再由关于x的方程2x∗x−1=t+3恰好有三个实数根,得到关于x的两个一元二次方程的根的情况,然后分情况讨论,确定t的取值范围.
【详解】解:由新定义的运算可得关于x的方程为:
当2x≤x−1时,即x≤−1时,有2x2−2x(x−1)=t+3,
即:2x2+2x−t−3=0x≤−1,其根为:x=−1±2t+72是负数,
当2x>x−1时,即x>−1,时,有x−12−2xx−1=t+3,
即:x2=−t−2x>−1,
要使关于x的方程2x∗x−1=t+3恰好有三个不相等的实数根,则x2=−t−2x>−1和2x2+2x−t−3=0x≤−1都必须有解,
∴−t−2≥02t+7≥0,
∴−72≤t≤−2,
(1)当−t−2=0时,即t=−2时,方程x2=−t−2x>−1只有一个根x=0,
∵当t=−2时,2t+7=3,
∴−1+32>0,−1−32<−1,
∴此时方程2x2+2x−t−3=0x≤−1只有一个根符合题意,
∴t=−2不符合题意;
(2)当−3
∴方程2x2+2x−t−3=0x≤−1只有一个根符合题意,
∴当−3
∴此时方程x2=−t−2x>−1只有一个根符合题意,
∵−12≤−1+2t+72≤0,−1≤−1−2t+72<−12,
∴当−7t≤t≤−3时,方程2x2+2x−t−3=0x≤−1最多有一个根符合题意,
∴当−7t≤t≤−3时2x∗x−1=t+3不可能有三个不相等的实根;
综上分析可知,t的取值范围是−3
三.解答题(共7小题,满分52分)
17.(6分)(23-24九年级·湖南永州·期中)解方程:
(1)2x(x−3)=3−x;
(2)(x+1)(x−2)=1.
【答案】(1)x1=3,x2=−12;
(2)x1=1+132,x2=1−132.
【分析】(1)利用因式分解法求解即可;
(2)整理成一般式,利用公式法求解即可;
本题考查了一元二次方程的解法,掌握解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法是解题的关键.
【详解】(1)解:2x(x−3)=3−x,
2x(x−3)+(x−3)=0,
(x−3)(2x+1)=0,
x−3=0或2x+1=0,
∴x1=3,x2=−12;
(2)(x+1)(x−2)=1,
x2−x−3=0,
a=1,b=−1,c=−3,
∴Δ=−12−4×1×−3=13>0,
∴x=1±132×1=1±132,
∴x1=1+132,x2=1−132.
18.(6分)(23-24九年级·四川乐山·期中)已知关于x的方程x2+2k−3x+k2+1=0.
(1)当k是为何值时,此方程有实数根;
(2)若此方程的两个实数根x1、x2满足:|x2|+|x1|=4,求k的值.
【答案】(1)当k≤512时,方程有实数根
(2)k=−12
【分析】
本题考查了根的判别式、根与系数的关系以及解一元一次方程(不等式,解题的关键是:牢记“当Δ≥0时,方程有实数根”;根据根与系数的关系结合x2+x1=4找出关于k的一元一次方程.
(1)根据方程的系数结合根的判别式Δ≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(2)根据根与系数的关系可得出x1+x2=3−2k、x1x2=k2+1,结合k的取值范围可得出x1、x2均为正数,根据|x2|+|x1|=4可得出关于k的一元一次方程,解之即可得出k值.
【详解】(1)解:∵关于x的方程x2+2k−3x+k2+1=0有实数根,
∴Δ=2k−32−4k2+1=−12k+5≥0,
解得:k≤512,
当k≤512时,方程有实数根.
(2)解:方程x2+2k−3x+k2+1=0的两个实数根为x1、x2,
∴x1+x2=3−2k,x1x2=k2+1.
∵k≤512,
∴x1、x2均为正数,
∴|x2|+|x1|=4,即3−2k=4,
解得:k=−12 .
15.(8分)(23-24九年级·黑龙江哈尔滨·期中)如图所示,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED的边长,易知AE=2c,这时我们把关于x的形如ax2+2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:
(1)试判断方程x2+2x+1=0是否为“勾系一元二次方程”.
(2)若x=−1是“勾系一元二次方程”ax2+2cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC的面积.
【答案】(1)是勾系一元二次方程;
(2)2.
【分析】(1)根据定义,把方程x2+2x+1=0变形为x2+2×2x+1=0,得到a=1,b=1,c=2,满足a2+b2=c2,判断即可.
(2)根据方程根的定义,新定义,完全平方公式,变形计算即可.
本题考查了勾股定理及其逆定理,方程根,完全平方公式,熟练掌握定义,定理,公式是解题的关键.
【详解】(1)根据定义,方程x2+2x+1=0变形为x2+2×2x+1=0,
得到a=1,b=1,c=2,
且a2+b2=c2,
故方程x2+2x+1=0是否为“勾系一元二次方程”.
(2)∵x=−1是“勾系一元二次方程”ax2+2cx+b=0的一个根,
∴a−2c+b=0,
∴a+b=2c,
∵四边形ACDE的周长是12,
∴2a+2b+2c=12,
∴a+b=4,
∴4=2c,
∴c=22,
∴a2+b2=8,
∵a+b2=a2+b2+2ab,
∴a+b2−a2+b22=ab=4
∴12ab=2
故△ABC的面积为2.
20.(8分)(23-24九年级·重庆忠县·期末)阅读下面材料,解决后面的问题:
我们知道,如果实数a,b满足a2+b2=0,那么a=b=0.利用这种思路,对于m2−2mn+2n2−6n+5=0,我们可以求出m,n的值.
解法是:∵m2−2mn+2n2−6n+5=0,∴m2−2mn+n2+n2−6n+5=0,
即m−n2+n−32=0,∴m−n=0,n−3=0,∴m=n=3.
根据这样的解法,完成:
(1)若x2+y2+8x−2y+17=0,求x+3y的值;
(2)若等腰△ABC的两边长a,b满足a2+b2=6a+8b−25,求该△ABC的周长;
(3)若正整数a,b,c满足不等式a2+b2+c2+11<3a+ab+6c,求a+b+c的值.
【答案】(1)x+3y=−1;
(2)△ABC的周长为10或11;
(3)a+b+c=6.
【分析】本题考查的是配方法的应用、等腰三角形的概念、三角形的三边关系,灵活运用配方法是解题的关键.
(1)利用配方法把原式变形,根据偶次方的非负性分别求出x、y,进而求出x+3y;
(2)利用配方法把原式变形,根据偶次方的非负性分别求出a、b,根据等腰三角形的概念解答即可;
(3)利用配方法把原式变形,根据偶次方的非负性以及有理数的平方、分情况讨论求出a、b、c,计算即可.
【详解】(1)解:∵x2+y2+8x−2y+17=0,
∴x+42+y−12=0,
∴x=−4,y=1,
∴x+3y=−1;
(2)解:∵a2+b2=6a+86−25,
∴a−32+b−42=0,
∴a=3,b=4.
∵a,b是等腰△ABC的两边长,
∴当a是腰,b是底时,△ABC的周长为3+3+4=10;
当b是腰,a是底时,△ABC的周长为4+4+3=11.
综上所述:△ABC的周长为10或11;
(3)解:∵a2+b2+c2+11<3a+ab+6c,
∴4a2+4b2+4c2+44<12a+4ab+24c,
∴3a−22+a−2b2+4c−32<4,
∵a,b,c为正整数,
∴c−3=0,即c=3,
而a−2=0或±1,即a=2或1或3,
当a=1时,必有a−2b=0,则b=0.5,与题意不符,舍去,
当a=3时,必有a−2b=0,则b=1.5,与题意不符,舍去,
∴a=2,b=1,c=3,
∴a+b+c=6.
21.(8分)(23-24九年级·重庆·期末)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某社区图书室积极推广全社区阅读活动,决定下半年逐月加大图书购置经费的投入.其中七月计划购买甲与乙两种书籍共100本.已知书籍甲的单价是68元,书籍乙的单价是50元,共花费5720元.
(1)请问七月计划购买甲、乙书籍各多少本?
(2)经过比较,图书室工作人员最终决定在新星书城购买书籍甲和乙.书籍甲的单价减少了m元,购买数量增加了52m本.书籍乙的单价不变,购买甲、乙书籍的总数量也不变,总费用比原计划减少了10m元,请求出m的值.
【答案】(1)甲40本,乙60本
(2)6
【分析】本题主要考查了一元一次方程及一元二次方程的应用,正确理解题意,找出等量关系列方程是解题的关键.
(1)设计划购买书籍甲x本,书籍乙100−x本,根据甲乙两种书籍共花费5720元列一元一次方程求解即可;
(2)根据购买甲、乙书籍的总数量也不变,总费用比原计划减少了10m元,列一元二次方程求解即可得解.
【详解】(1)解:设计划购买书籍甲x本,书籍乙100−x本.由题得:
68x+50100−x=5720
解得:x=40
100−x=100−40=60
答:计划购买书籍甲40本,书籍乙60本;
(2)解:由题得:68−m40+52m+50100−40+52m=5720−10m
∴m2−6m=0
∴m1=0(舍),m2=6
答:m的值为6.
22.(8分)(23-24九年级·山东济南·期末)如图,在△ABC中,∠B=50°,AB=6cm,BC=8cm,点P从A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.点P,Q同时出发,当点Q运动到点C时,两点停止运动,设运动时间t秒.
(1)填空:BQ=______cm,PB=______cm;(用含t的代数式表示);
(2)当t为几秒时,PQ的长度等于42cm;
(3)是否存在某一时刻t,使四边形APQC的面积等于△ABC面积的23?如果存在,求出t的值,如果不存在,请说明理由.
【答案】(1)2t,6−t
(2)2s或25s
(3)存在,t=2s
【分析】(1)根据路程=速度×时间,BQ=2tcm,AP=tcm,结合已知解答即可.
(2)根据勾股定理PQ2=PB2+BQ2,列式计算即可.
(3)根据S四边形APQC=S△ABC−S△PBQ=23S△ABC列式计算即可.
【详解】(1)∵∠B=50°,AB=6cm,BC=8cm,点P从A开始沿边AB向点B以1cm/s的速度移动,点Q从点B开始沿边BC向点C以2cm/s的速度移动.
∴BQ=2tcm,AP=tcm,
∴PB=AB−AP=6−tcm,
故答案为:2t,6−t.
(2)∵∠B=50°,AB=6cm,BC=8cm,BQ=2tcm ,PB=6−tcm,
(1)根据根与系数的关系即可求解;
(2)先验证m≠0,再在2m2−7m+1=0两边同时除以m2,得1m,n是一元二次方程x2−7x+2=0的两个不等实数根,求出1m+n=7,1m⋅n=2,变形代入即可;
(3)先根据题意得到p,q是一元二次方程x2−2x=3−t的两个不等实数根,求出p+q=2,pq=t−3代入q2+12p+4−t化简,又因为p,q是方程x2−2x=3−t的两个不等实数根,利用根与系数的关系即可求解.
【详解】解:(1)由题意得:a,b是方程x2−5x+1=0的两个不相等的实数根,由根与系数的关系可知a+b=5,ab=1;
解:(2)∵把m=0代入2m2−7m+1得1≠0不合题意,
∴m≠0
∴2m2−7m+1=0两边同时除以m2得1m2−71m+2=0,
又∵n2−7n+2=0,且mn≠1,
∴可将1m,n看作一元二次方程x2−7x+2=0的两个不等实数根,
∴利用根与系数的关系可得出1m+n=7,1m⋅n=2,
∴mn+1=7m,n=2m,
∴2mn+2mn+3n+1=2(mn+1)(mn+1)+3n=2⋅7m7m+3⋅2m=1413.
解:(3)将方程12q2−q=12(3−t)两边同时乘以2得q2−2q=3−t,
又∵p2−2p=3−t,且p≠q,
∴可将p,q看作一元二次方程x2−2x=3−t的两个不等实数根,
∴利用根与系数的关系可得出p+q=2,pq=t−3,q2=2q+3−t,
∴q2+1(2p+4−t)
=(2q+3−t+1)(2p+4−t)
=(2q+4−t)(2p+4−t)
=4pq+8q−2qt+8p+16−4t−2pt−4t+t2
=4pq+8(p+q)−2t(p+q)+16−8t+t2
=4(t−3)+8×2−2t⋅2+16−8t+t2
=4t−12+16−4t+16−8t+t2
=t2−8t+20
=(t−4)2+4
∵p,q是方程x2−2x=3−t的两个不等实数根,
∴Δ=(−2)2−4(t−3)=4−4t+12=16−4t>0,
∴t<4.
∵(t−4)2+4>4,
∴q2+1(2p+4−t)>4.
初中6 应用一元二次方程学案及答案: 这是一份初中<a href="/sx/tb_c99899_t4/?tag_id=42" target="_blank">6 应用一元二次方程学案及答案</a>,共46页。学案主要包含了北师大版,题型1 数字问题,题型2 增长率问题,题型3 利润问题,题型5 传播问题,题型6 工程问题,题型7 行程问题,题型9 古文问题等内容,欢迎下载使用。
数学九年级上册5 一元二次方程的根与系数的关系导学案: 这是一份数学九年级上册<a href="/sx/tb_c99898_t4/?tag_id=42" target="_blank">5 一元二次方程的根与系数的关系导学案</a>,共27页。学案主要包含了北师大版,变式1-1,变式1-2,变式1-3,变式2-1,变式2-2,变式2-3,变式3-1等内容,欢迎下载使用。
数学九年级上册1 认识一元二次方程导学案: 这是一份数学九年级上册<a href="/sx/tb_c99894_t4/?tag_id=42" target="_blank">1 认识一元二次方程导学案</a>,共24页。学案主要包含了北师大版,变式1-1,变式1-2,变式1-3,变式2-1,变式2-2,变式2-3,变式3-1等内容,欢迎下载使用。