|试卷下载
搜索
    上传资料 赚现金
    专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      专题2.3 根的判别式【十大题型】(举一反三)(北师大版)(原卷版).docx
    • 练习
      专题2.3 根的判别式【十大题型】(举一反三)(北师大版)(解析版).docx
    专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)01
    专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)02
    专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)03
    专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)01
    专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)02
    专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版(2024)九年级上册3 用公式法求解一元二次方程优秀课时作业

    展开
    这是一份北师大版(2024)九年级上册3 用公式法求解一元二次方程优秀课时作业,文件包含专题23根的判别式十大题型举一反三北师大版原卷版docx、专题23根的判别式十大题型举一反三北师大版解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。


    TOC \ "1-3" \h \u
    \l "_Tc30997" 【题型1 判断不含字母的一元二次方程的根的情况】 PAGEREF _Tc30997 \h 1
    \l "_Tc4230" 【题型2 判断含字母的一元二次方程的根的情况】 PAGEREF _Tc4230 \h 2
    \l "_Tc15250" 【题型3 由方程根的情况确定字母的值或取值范围】 PAGEREF _Tc15250 \h 2
    \l "_Tc2754" 【题型4 应用根的判别式证明方程根的情况】 PAGEREF _Tc2754 \h 3
    \l "_Tc32484" 【题型5 应用根的判别式求代数式的取值范围】 PAGEREF _Tc32484 \h 3
    \l "_Tc17755" 【题型6 根的判别式与不等式、分式、函数等知识的综合】 PAGEREF _Tc17755 \h 3
    \l "_Tc29072" 【题型7 根的判别式与三角形的综合】 PAGEREF _Tc29072 \h 4
    \l "_Tc30097" 【题型8 根的判别式与四边形的综合】 PAGEREF _Tc30097 \h 5
    \l "_Tc31073" 【题型9 关于根的判别式的多结论问题】 PAGEREF _Tc31073 \h 5
    \l "_Tc359" 【题型10 关于根的判别式的新定义问题】 PAGEREF _Tc359 \h 6
    【知识点 一元二次方程根的判别式】
    一元二次方程根的判别式:∆=b2−4ac.
    ①当∆=b2−4ac>0时,原方程有两个不等的实数根;
    ②当∆=b2−4ac=0时,原方程有两个相等的实数根;
    ③当∆=b2−4ac<0时,原方程没有实数根.
    【题型1 判断不含字母的一元二次方程的根的情况】
    【例1】(2023春·山东青岛·九年级统考期末)下列方程中,有两个相等实数根的是( )
    A. x2−2x+1=0 B. x2+1=0 C. x2−2x−3=0 D. x2−2x=0
    【变式1-1】(2023春·九年级课时练习)一元二次方程 x2−22x+2=0 的实数根的个数是( )
    A.0 B.1 C.2 D.无法判断1
    【变式1-2】(2023春·江西·九年级统考阶段练习)下列一元二次方程没有实数根的是( )
    A.x2+1=0B.x2+2x+1=0C.x2=4D.x2+x−2=0
    【变式1-3】(2023春·上海长宁·九年级上海市延安初级中学校考期中)在下列方程中,有实数根的是( )
    A.x2+2x+3=0B.4x+1+1=0
    C.xx−1=1x−1D.x3+8=0
    【题型2 判断含字母的一元二次方程的根的情况】
    【例2】(2023春·安徽合肥·九年级统考期中)已知关于x的方程ax2−(1−a)x−1=0,下列说法正确的是( )
    A.当a=0时,方程无实数解B.当a≠0时,方程有两个相等的实数解
    C.当a=−1时,方程有两个不相等的实数解D.当a=−1时,方程有两个相等的实数解
    【变式2-1】(2023·河北邯郸·统考一模)已知a、c互为相反数,则关于x的方程ax2+5x+c=0a≠0根的情况( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.无实数根D.有一根为5
    【变式2-2】(2023·全国·九年级专题练习)已知关于x的方程x2-2x-m=0没有实数根,试判断关于x的方程x2+2mx+m(m+1)=0的根的情况.
    【变式2-3】(2023春·福建厦门·九年级厦门市松柏中学校考期末)关于x的一元二次方程x2−5x+c=0,当c=t0时,方程有两个相等的实数根:若将c的值在t0的基础上增大,则此时方程根的情况是( )
    A.没有实数根B.两个相等的实数根
    C.两个不相等的实数根D.一个实数根
    【题型3 由方程根的情况确定字母的值或取值范围】
    【例3】(2023春·浙江舟山·九年级校联考期中)在实数范围内,存在2个不同的x的值,使代数式x2−3x+c与代数式x+2值相等,则c的取值范围是 .
    【变式3-1】(2023春·北京西城·九年级北京市第三十五中学校考期中)已知关于x的方程mx2−3x+1=0无实数解,则m取到的最小正整数值是 .
    【变式3-2】(2023春·广西梧州·九年级校考期中)关于x的方程x2+2m−2x+m2−3m+3=0.
    (1)有两个不相等的实数根,求m的取值范围;
    (2)若方程有实数根,而且m为非负整数,求方程的根.
    【变式3-3】(2023春·北京平谷·九年级统考期末)关于x的一元二次方程ax2−2ax+b+1=0(ab≠0)有两个相等的实数根k,则下列选项成立的是( )
    A.若﹣1<a<0,则ka>kbB.若ka>kb,则0<a<1
    C.若0<a<1,则ka【题型4 应用根的判别式证明方程根的情况】
    【例4】(2023春·广东珠海·九年级统考期末)已知关于x的一元二次方程x2−2mx+m2−1=0.
    (1)求证:方程总有两个实数根;
    (2)若方程的一根大于2,一根小于1,求m的取值范围.
    【变式4-1】(2023春·九年级课时练习)已知关于x的一元二次方程2x2+2mx+m−1=0,求证:不论m为什么实数,这个方程总有两个不相等实数根.
    【变式4-2】(2023春·九年级课时练习)已知关于x的一元二次方程x2−3x+2=m(x−1).
    (1)求证:方程总有两个实数根;
    (2)若方程两个根的差是2,求实数m的值.
    【变式4-3】(2023春·九年级课时练习)已知关于x的一元二次方程x2﹣(m﹣2)x+2m﹣8=0.
    (1)求证:方程总有两个实数根.
    (2)若方程有一个根是负整数,求正整数m的值.
    【题型5 应用根的判别式求代数式的取值范围】
    【例5】(2023春·浙江温州·九年级校考期中)已知关于x的一元二次方程x2−2x+3m=0有实数根,设此方程的一个实数根为t,令y=t2−2t+4m+1,则y的取值范围为 .
    【变式5-1】(2023春·安徽合肥·九年级统考期中)关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根x0,则下列关于2ax0+b的值判断正确的是( )
    A.2ax0+b>0B.2ax0+b=0C.2ax0+b<0D.2ax0+b≤0
    【变式5-2】(2023春·浙江宁波·九年级统考期末)已知实数m,n满足m2−mn+n2=3,设P=m2+mn−n2,则P的最大值为( )
    A.3B.4C.5D.6
    【变式5-3】(2023春·浙江杭州·九年级校考期中)已知关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,设此方程的一个实数根为b,令y=4b2−8b+3m+2,则( )
    A.y>1B.y≥1C.y≤1D.y<1
    【题型6 根的判别式与不等式、分式、函数等知识的综合】
    【例6】(2023春·重庆北碚·九年级西南大学附中校考期中)若关于x的一元一次不等式组3x+82≤x+63x+a>4x−5的解集为x≤4,关于x的一元二次方程(a−1)x2+3x+1=0有实数根,则所有满足条件的整数a的值之和是 .
    【变式6-1】(2023春·安徽安庆·九年级安庆市第四中学校考期末)若关于x的一元二次方程x2+2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )
    A. B.
    C. D.
    【变式6-2】(2023春·九年级课时练习)要使关于x的一元二次方程ax2+2x−1=0有两个实数根,且使关于x的分式方程xx−4+a+24−x=2的解为非负数的所有整数a的个数为( )
    A.5个B.6个C.7个D.8个
    【变式6-3】(2023·湖北武汉·校联考模拟预测)已知a,b为正整数,且满足a+ba2+ab+b2=449,则a+b的值为( )
    A.4B.10C.12D.16
    【题型7 根的判别式与三角形的综合】
    【例7】(2023春·广东惠州·九年级校考期中)已知关于x的一元二次方程a+cx2−2bx+a−c=0,其中分别a、b、c是△ABC的边长.
    (1)若方程有两个相等的实数根,试判断△ABC的形状;
    (2)若△ABC是等边三角形,试求该一元二次方程的根.
    【变式7-1】(2023春·浙江杭州·九年级校考期中)已知关于x的一元二次方程x2−2k+1x+k2+k=0.
    (1)求证:方程有两个不相等的实数根;
    (2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,
    ①若k=3时,请判断△ABC的形状并说明理由;
    ②若△ABC是等腰三角形,求k的值.
    【变式7-2】(2023春·浙江金华·九年级校考期中)已知关于x的方程x2−m+1x+2m−1=0.
    (1)当方程一个根为x=3时,求m的值.
    (2)求证:无论m取何值,这个方程总有实数根.
    (3)若等腰△ABC的一腰长a=6,另两边b、c恰好是这个方程的两个根.则△ABC的面积为______.
    【变式7-3】(2023春·福建厦门·九年级厦门市松柏中学校考期末)已知关于x的一元二次方程x2−m+5x+5m=0.
    (1)求证:此一元二次方程一定有两个实数根;
    (2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.
    【题型8 根的判别式与四边形的综合】
    【例8】(2023春·四川成都·九年级校考阶段练习)已知:矩形ABCD的两边AB,BC的长是关于方程x2−mx+m2−14=0的两个实数根.
    (1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;
    (2)若AB的长为2,那么矩形ABCD的周长是多少?
    【变式8-1】(2023春·湖南益阳·九年级统考期末)已知▱ABCD两邻边是关于x的方程x2-mx+m-1=0的两个实数根.
    (1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.
    (2)若AB的长为2,那么▱ABCD的周长是多少?
    【变式8-2】(2023春·浙江杭州·九年级杭州市采荷中学校考期中)已知关于x的一元二次方程x2+m−5x−5m=0.
    (1)判别方程根的情况,并说明理由.
    (2)设该一元二次方程的两根为a, b,且a, b是矩形两条对角线的长,求矩形对角线的长.
    【变式8-3】(2023春·广东佛山·九年级校考期中)关于x的一元二次方程14x2−mx+2m−1=0的两个根是平行四边形ABCD的两邻边长.
    (1)当m=2,且四边形ABCD为矩形时,求矩形的对角线长度.
    (2)若四边形ABCD为菱形,求菱形的周长.
    【题型9 关于根的判别式的多结论问题】
    【例9】(2023春·河北保定·九年级保定市第十七中学校考期末)已知关于x的方程kx2−2k−3x+k−2=0,则①无论k取何值,方程一定无实数根;②k=0时,方程只有一个实数根;③k≤94且k≠0时,方程有两个实数根;④无论k取何值,方程一定有两个实数根.上述说法正确的个数是( )
    A.1个B.2个C.3个D.4个
    【变式9-1】(2023春·浙江绍兴·九年级统考期末)已知aa>1是关于x的方程x2−bx+b−a=0的实数根.下列说法:①此方程有两个不相等的实数根;②当a=t+1时,一定有b=t−1;③b是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有( )
    A.①②B.②③C.①③D.③④
    【变式9-2】(2023春·浙江杭州·九年级校考期中)对于代数式ax2+bx+c(a≠0,a,b,c为常数)①若b2−4ac=0,则ax2+bx+c=0有两个相等的实数根;②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c;③若ax2+bx+c+2=0与方程x+2x−3=0的解相同,则4a−2b+c=−2,以上说法正确的是 .
    【变式9-3】(2023春·浙江·九年级期末)已知方程甲:ax2+2bx+a=0,方程乙:bx2+2ax+b=0都是一元二次方程,
    ①若x=1是方程甲的解,则x=1也是方程乙的解;
    ②若方程甲有两个相等的实数解,则方程乙也有两个相等的实数解;
    ③若方程甲有两个不相等的实数解,则方程乙也有两个不相等的实数解;
    ④若x=n既是方程甲的解,又是方程乙的解,那么n可以取1或−1.
    以上说法中正确的序号是( )
    A.①②B.③④C.①②③④D.①②④
    【题型10 关于根的判别式的新定义问题】
    【例10】(2023春·江苏宿迁·九年级统考阶段练习)对于实数a、b,定义运算“*”; a∗b=a2−aba≤bb2−aba>b,关于x的方程2x∗x−1=t+3恰好有三个不相等的实数根,则t的取值范围是 .
    【变式10-1】(2023春·四川雅安·九年级统考期末)对于实数a,b定义运算“☆”如下:a☆b=ab2−ab,例如3☆2=3×22−3×2=6,则方程2☆x=−12的根的情况为( )
    A.没有实数根B.只有一个实数根
    C.有两个相等的实数根D.有两个不相等的实数根
    【变式10-2】(2023春·安徽马鞍山·九年级校考阶段练习)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )
    A.a=b−cB.a=bC.b=cD.a=c
    【变式10-3】(2023春·河北沧州·九年级统考期中)定义新运算“※”:对于实数m,n,p,q,有m,p※q,n=mn+pq,其中等式右边是通常的加法和乘法运算,例如:2,3※4,5=2×5+3×4=22.若关于x的方程x2+1,x※5−2k,k=0:有两个实数根,则k的取值范围是 .
    相关试卷

    北师大版(2024)九年级上册6 利用相似三角形测高精品巩固练习: 这是一份北师大版(2024)九年级上册<a href="/sx/tb_c99906_t7/?tag_id=28" target="_blank">6 利用相似三角形测高精品巩固练习</a>,文件包含专题46位似十大题型举一反三北师大版原卷版docx、专题46位似十大题型举一反三北师大版解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    北师大版(2024)九年级上册4 用因式分解法求解一元二次方程优秀课后练习题: 这是一份北师大版(2024)九年级上册<a href="/sx/tb_c99897_t7/?tag_id=28" target="_blank">4 用因式分解法求解一元二次方程优秀课后练习题</a>,文件包含专题24根与系数的关系十大题型举一反三北师大版原卷版docx、专题24根与系数的关系十大题型举一反三北师大版解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    北师大版(2024)九年级上册3 正方形的性质与判定优秀课后测评: 这是一份北师大版(2024)九年级上册<a href="/sx/tb_c99892_t7/?tag_id=28" target="_blank">3 正方形的性质与判定优秀课后测评</a>,文件包含专题13正方形的判定与性质十大题型举一反三北师大版原卷版docx、专题13正方形的判定与性质十大题型举一反三北师大版解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map