重庆市渝中学区求精中学2023年数学八年级第一学期期末学业质量监测试题【含解析】
展开注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.已知A,B两点关于轴对称,若点A坐标为(2,-3),则点B的坐标是( )
A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)
2.在△ABC中, 已知AB=4cm, BC=9cm, 则AC的长可能是()
A.5 cmB.12 cmC.13 cmD.16 cm
3.如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为( )
A.65° B.70° C.75° D.85°
4.如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是( )
A.m+2nB.2m+nC.2m+2nD.m+n
5.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2)B.C.D.
6.下列美术字中,不属于轴对称图形的是( )
A.B.C.D.
7.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )
A.B.C.D.
8.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为( )
A.B.C.D.
9.等边三角形的两个内角的平分线所夹的钝角的度数为( )
A.B.C.D.
10.对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是( )
A.B.C.D.
11.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A为( )时,ED恰为AB的中垂线.
A.15°B.20°C.30°D.25°
12.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案( )
A.2 B.3 C.4 D.5
二、填空题(每题4分,共24分)
13.等腰三角形的一个角是72º,则它的底角是______________________.
14.分解因式:mx2﹣4m=_____.
15.如图,在中,的垂直平分线交于点,,且,则的度数为__________
16.点关于轴的对称点的坐标_______.
17.关于一次函数y=kx+k(k≠0)有如下说法:其中说法正确的序号是_____.
①当k>0时,y随x的增大而减小;
②当k>0时,函数图象经过一、二、三象限;
③函数图象一定经过点(1,0);
④将直线y=kx+k(k≠0)向下移动2个单位长度后所得直线表达式为y=(k﹣2)x+k(k≠0).
18.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,则m_____n.(填“>”或“<”)
三、解答题(共78分)
19.(8分)如图,已知AC∥BD.
(1)作∠BAC的平分线,交BD于点M(尺规作图,保留作图痕迹,不用写作法);
(2)在(1)的条件下,试说明∠BAM=∠AMB.
20.(8分)已知函数y=(m+1)x2-|m|+n+1.
(1)当m,n为何值时,此函数是一次函数?
(2)当m,n为何值时,此函数是正比例函数?
21.(8分)如图,已知直线与轴,轴分别交于,两点,以为直角顶点在第二象限作等腰.
(1)求点的坐标,并求出直线的关系式;
(2)如图,直线交轴于,在直线上取一点,连接,若,求证:.
(3)如图,在(1)的条件下,直线交轴于点,是线段上一点,在轴上是否存在一点,使面积等于面积的一半?若存在,请求出点的坐标;若不存在,请说明理由.
22.(10分)在中,与相交于点,,,,求的长.
23.(10分)如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE
求证:AH=2BD
24.(10分)如图所示的方格纸中,每个小方格的边长都是1,点A(﹣4,1)B(﹣3,3)C(﹣1,2)
(1)作△ABC关于y轴对称的△A′B′C′;
(2)在x轴上找出点P,使PA+PC最小,并直接写出P点的坐标.
25.(12分)如图,将平行四边形ABCD的边AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠A=60°,求CE的长.
26.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高.求∠DBC的 度数.
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案.
【详解】∵A,B两点关于轴对称,点A坐标为(2,-3),
∴点B坐标为(2,3),
故选:D.
【点睛】
本题考查了关于x轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
2、B
【分析】根据三角形的三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边,求出AC的取值范围,然后逐项判断即可.
【详解】
由三角形的三边关系定理得
因此,只有B选项满足条件
故选:B.
【点睛】
本题考查了三角形的三边关系定理,熟记定理是解题关键.
3、A
【解析】试题解析:∵EF⊥BC,∠DEF=15°,
∴∠ADB=90°-15°=75°.
∵∠C=35°,
∴∠CAD=75°-35°=40°.
∵AD是∠BAC的平分线,
∴∠BAC=2∠CAD=80°,
∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°.
故选A.
4、D
【分析】根据垂直平分线的性质和等腰三角形的定义,可得AD=BD,AC=AB=m,进而即可求解.
【详解】∵AB的垂直平分线MN交AC于点D,顶角∠A=40°,
∴AD=BD,AC=AB=m,
∴△DBC的周长=DB+BC+CD=BC+AD+DC=AC+BC=m+n.
故选:D.
【点睛】
本题主要考查等腰三角形的定义以及垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点距离相等,是解题的关键.
5、D
【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.
【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),
∴AB=OB=8,∠AOB=45°,
∵,点D为OB的中点,
∴BC=6,OD=BD=4,
∴D(4,0),C(8,6),
作D关于直线OA的对称点E,连接EC交OA于P,
则此时,四边形PDBC周长最小,E(0,4),
∵直线OA 的解析式为y=x,
设直线EC的解析式为y=kx+b,
∴,
解得:,
∴直线EC的解析式为y=x+4,
解 得,,
∴P(,),
故选:D.
【点睛】
本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.
6、A
【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】由轴对称图形的定义定义可知,A不是轴对称图形,B、C、D都是轴对称图形.
故选A.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
7、C
【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.
故选C.
【点睛】
此题考查函数的图象,解题关键在于观察图形
8、B
【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),
∴D(4,6),
故选B.
9、D
【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.
【详解】如图:
∵∠ABC=∠ACB=,
BO、CO是两个内角的平分线,
∴∠OBC=∠OCB=30,
∴在△OBC中,∠BOC=180−30−30=.
故选D.
【点睛】
本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.
10、B
【分析】根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可.
【详解】解:
∴方程表达为:
解得:,
经检验,是原方程的解,
故选:B.
【点睛】
本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.
11、C
【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.
【详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下
∵∠C=90°,∠A=30°
∴∠CBA=90°-∠A=60°
∵BE平分∠CBA
∴∠ABE=∠CBA=30°
∴∠ABE=∠A
∴EB=EA
∵ED⊥AB
∴ED恰为AB的中垂线
故选C.
【点睛】
此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.
12、A
【解析】解:设购买单价为8元的盆栽x盆,购买单价为10元的盆栽y盆,根据题意可得:
8x+10y=100,当x=10,y=2,当x=5,y=6,当x=0,y=10(不合题意,舍去).
故符合题意的有2种,故选A.
点睛:此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.
二、填空题(每题4分,共24分)
13、
【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.
【详解】解:①当顶角是72°时,它的底角=(180°72°)=54°;
②底角是72°.
所以底角是72°或54°.
故答案为:72°或54°.
【点睛】
此题主要考查了学生的三角形的内角和定理及等腰三角形的性质的运用.
14、m(x+2)(x﹣2)
【解析】提取公因式法和公式法相结合因式分解即可.
【详解】原式
故答案为
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
15、90°
【分析】根据题意利用线段的垂直平分线的性质,推出CE=CA,进而分析证明△CAB是等边三角形即可求解.
【详解】解:∵MN垂直平分线段AE,
∴CE=CA,
∴∠E=∠CAE=30°,
∴∠ACB=∠E+∠CAE=60°,
∵AB=CE=AC,
∴△ACB是等边三角形,
∴∠CAB=60°,
∴∠BAE=∠CAB+∠CAE=90°,
故答案为:90°.
【点睛】
本题考查等腰三角形的性质以及线段的垂直平分线的性质等知识,解题的关键是熟练掌握相关基本知识.
16、
【分析】根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可求出点的坐标.
【详解】解:点关于轴的对称点的坐标为
故答案为:.
【点睛】
此题考查的是求关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数是解决此题的关键.
17、②
【分析】利用一次函数的增减性即可判断①②,把点的坐标代入即可判断③,根据平移的规律即可判断④,则可求得答案.
【详解】解:①当k>0时,y随x的增大而增大,故错误.
②k>0时,函数图象经过一、二、三象限;故正确;
③当x=1时,y=k+k=2k≠0,即直线过定点(1,2k),不经过点(1,0),故错误;
④将直线y=kx+k(k≠0)向下移动2个单位长度后所得直线表达式为y=kx+k﹣2(k≠0).故错误;
故说法正确为②;
故答案为②.
【点睛】
本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).
18、>
【解析】将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.
【详解】解:∵一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,
∴m=﹣2a+1,n=﹣2a﹣1
∴m>n
故答案为>
【点睛】
本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.
三、解答题(共78分)
19、(1)见解析(2)见解析
【分析】(1)根据角平分线的作法可以解答本题;
(2)根据角平分线的性质和平行线的性质可以解答本题.
【详解】(1)如图所示;
(2)∵AM平分∠BAC,
∴∠CAM=∠BAM,
∵AC∥BD,
∴∠CAM=∠AMB,
∴∠BAM=∠AMB.
【点睛】
本题考查基本作图、角平分线的性质、平行线的性质,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.
20、(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−1时,这个函数是正比例函数.
【分析】(1)直接利用一次函数的定义分析得出答案;
(2)直接利用正比例函数的定义分析得出答案.
【详解】(1)根据一次函数的定义,得:
2−|m|=1,
解得:m=±1.
又∵m+1≠0即m≠−1,
∴当m=1,n为任意实数时,这个函数是一次函数;
(2)根据正比例函数的定义,得:
2−|m|=1,n+1=0,
解得:m=±1,n=−1,
又∵m+1≠0即m≠−1,
∴当m=1,n=−1时,这个函数是正比例函数.
【点睛】
此题考查一次函数的定义,正比例函数的定义,解题关键在于利用其各定义进行解答.
21、(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).
【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;
(2)求出B、E、D的坐标分别为(-1,0)、(0,)、(1,-1),即可求解;
(3)求出BC表达式,将点P代入,求出a值,再根据AC表达式求出M点坐标,由S△BMC=MB×yC=×10×2=10,S△BPN=S△BCM=5= NB×a=可求解.
【详解】解:(1)令x=0,则y=4,令y=0,则x=﹣2,
则点A、B的坐标分别为:(0,4)、(﹣2,0),
过点C作CH⊥x轴于点H,
∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,
∴∠ABO=∠BCH,
∠CHB=∠BOA=90°,BC=BA,
在△CHB和△BOA中,
,
∴△CHB≌△BOA(AAS),
∴BH=OA=4,CH=OB=2,
∴ 点C(﹣6,2),
将点A、C的坐标代入一次函数表达式:y= m x+ b得:,
解得:,
故直线AC的表达式为:y=x+4;
(2)同理可得直线CD的表达式为:y=﹣x﹣1①,则点E(0,﹣1),
直线AD的表达式为:y=﹣3x+4②,
联立①②并解得:x=2,即点D(2,﹣2),
点B、E、D的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),
故点E是BD的中点,即BE=DE;
(3)将点BC的坐标代入一次函数表达式并解得:
直线BC的表达式为:y=﹣x-1,
将点P(﹣,a)代入直线BC的表达式得:,
直线AC的表达式为:y=x+4,
令y=0,则x=-12,则点M(﹣12,0),
S△BMC=MB×y C=×10×2=10,
S△BPN=S△BCM=5=NB×a=,
解得:NB=,
故点N(﹣,0)或(,0).
【点睛】
本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键.
22、
【分析】由平行四边形的性质得,,,由勾股定理得,从而得.
【详解】∵在中,
∴,,,
∵,
∴,
又,
∴,
在中,,
∴.
【点睛】
本题主要考查平行四边形的性质,等腰直角三角形的性质以及勾股定理,掌握平行四边形的性质定理,是解题的关键.
23、详见解析
【分析】由等腰三角形的底边上的垂线与中线重合的性质求得BC=2BD,根据直角三角形的两个锐角互余的特性求知∠1+∠C=90°;又由已知条件AE⊥AC知∠2+∠C=90°,所以根据等量代换求得∠1=∠2;然后由三角形全等的判定定理SAS证明△AEH≌△BEC,再根据全等三角形的对应边相等及等量代换求得AH=2BD
【详解】∵AD是高,BE是高
∴∠EBC+∠C=∠CAD+∠C=90°
∴∠EBC=∠CAD
又∵AE=BE
∠AEH=∠BEC
∴△AEH△BEC(ASA)
∴AH =BC
∵AB=AC,AD是高
∴BC=2BD
∴AH =2BD
考点:1 等腰三角形的性质;2 全等三角形的判定与性质
24、(1)见解析;(2)见解析
【解析】(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接可得;
(2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P.
【详解】(1)如图所示,△A′B′C′即为所求;
(2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,其坐标为(﹣3,0).
【点睛】
本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题.
25、(1)见解析;(2)
【分析】(1)利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,进而得出答案;
(2)首先过点D作DN⊥BC于点N,再利用平行四边形的性质结合勾股定理得出DF的长,进而得出答案.
【详解】(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵DE=AD,F是BC边的中点,
∴DE=FC,DE∥FC,
∴四边形CEDF是平行四边形;
(2)解:过点D作DN⊥BC于点N,
∵四边形ABCD是平行四边形,∠A=60°,
∴∠BCD=∠A=60°,CD=AB,BC=AD,
∵AB=4,AD=6,
∴FC=3,NC=DC=2,DN=2,
∴FN= FC - NC =1,
则DF=EC==.
【点睛】
本题主要考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.
26、18°
【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.
【详解】解:∵∠C=∠ABC=2∠A,
∴∠C+∠ABC+∠A=5∠A=180°,
∴∠A=36°.
则∠C=∠ABC=2∠A=72°.
又∵BD是AC边上的高,
∴∠BDC=90°,
则∠DBC=90°-∠C=18°.
【点睛】
此题考查了三角形内角和定理的运用,三角形的高线,以及直角三角形两锐角互余等知识,三角形的内角和是180°.
重庆市渝中学区实验学校2023年数学八年级第一学期期末学业质量监测试题【含解析】: 这是一份重庆市渝中学区实验学校2023年数学八年级第一学期期末学业质量监测试题【含解析】,共16页。试卷主要包含了若等式,4的算术平方根是,计算 的结果为等内容,欢迎下载使用。
重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末联考模拟试题【含解析】: 这是一份重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末联考模拟试题【含解析】,共17页。试卷主要包含了答题时请按要求用笔,如图,直线y=ax+b过点A等内容,欢迎下载使用。
重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末达标检测试题【含解析】: 这是一份重庆市渝中学区求精中学2023-2024学年数学八年级第一学期期末达标检测试题【含解析】,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,如果点,如图,若,则下列结论错误的是等内容,欢迎下载使用。