还剩13页未读,
继续阅读
所属成套资源:2025届高考数学一轮复习教师用书多份(Word附解析)
成套系列资料,整套一键下载
2025届高考数学一轮复习教师用书第三章第二节第2课时函数的奇偶性与周期性讲义(Word附解析)
展开
第2课时 函数的奇偶性与周期性【必备知识·逐点夯实】【知识梳理·归纳】1.函数的奇偶性【微点拨】奇、偶函数定义域的特点是关于原点对称,函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.2.函数的周期性(1)周期函数:设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期(若不特别说明,T一般就是指最小正周期).【微点拨】存在一个非零常数T,使f(x+T)=f(x)为恒等式,即自变量x每增加一个T后,函数值就会重复出现一次.【基础小题·自测】1.(多维辨析)(多选题)下列结论错误的是 ( )A.函数y=x2在(0,+∞)上是偶函数B.若函数f(x)为奇函数,则一定有f(0)=0C.若T是函数f(x)的一个周期,则nT(n∈Z,n≠0)也是函数f(x)的周期D若函数f(x)满足关系f(a+x)=-f(b-x),则函数f(x)的图象关于点(a+b2,0)对称【解析】选AB.2.(2023·上海高考)下列函数是偶函数的是 ( )A.y=sin x B.y=cos xC.y=x3 D.y=2x【解析】选B.对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由余弦函数的性质可知,y=cos x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.3.(忽略奇偶函数定义域关于原点对称)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 ( )A.-13 B.13 C.12 D.-12【解析】选B.因为f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,所以a-1+2a=0,所以a=13.又f(-x)=f(x),所以b=0,所以a+b=13.4.(必修第一册P86习题T11·变设问)已知函数f(x)是定义域为R的奇函数,当x≥0时,f(x)=x(1+x),则f(-1)=__________. 【解析】f(1)=1×2=2,又f(x)为奇函数,所以f(-1)=-f(1)=-2.答案:-2【巧记结论·速算】函数奇偶性的常用结论1.如果函数f(x)是奇函数且在x=0处有意义,则f(0)=0;2.如果函数f(x)是偶函数,则f(-x)=f(x)=f(|x|);3.如果函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.【即时练】 1.设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x-2)>0}= ( )A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}【解析】选B.由f(x)=x3-8,知f(x)在[0,+∞)上单调递增,且f(2)=0.由已知条件可知f(x-2)>0⇒f(|x-2|)>f(2),所以|x-2|>2,解得x<0或x>4.2.已知函数f(x)=a-2ex+1(a∈R)是奇函数,则a=________. 【解析】函数f(x)的定义域为R,且函数f(x)是奇函数,f(0)=a-1=0,即a=1,经验证a=1满足条件.答案:13.设函数f(x)=(x+1)2+sinxx2+1的最大值为M,最小值为m,则M+m=__________. 【解析】函数f(x)的定义域为R,f(x)=(x+1)2+sinxx2+1=1+2x+sinxx2+1,设g(x)=2x+sinxx2+1,则g(-x)=-g(x),所以g(x)为奇函数,所以,g(x)max+g(x)min=0,所以M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.答案:2【核心考点·分类突破】考点一 函数奇偶性的判断[例1]判断下列函数的奇偶性.(1)f(x)=x3-1x;(2)f(x)=x2-1+1-x2;(3)f(x)=x2-|x|+1,x∈[-1,4];(4)f(x)=-x2+2x+1,x>0,x2+2x-1,x<0;(5)f(x)=(x-1)1+x1-x,x∈(-1,1).【解析】(1)函数的定义域为{x|x≠0},关于原点对称,并且对于定义域内的任意一个x都有f(-x)=(-x)3-1-x=-(x3-1x)=-f(x),所以f(x)为奇函数.(2)f(x)的定义域为{-1,1},关于原点对称.又f(-1)=f(1)=0,f(-1)=-f(1)=0,所以f(x)既是奇函数又是偶函数.(3)因为f(x)=x2-|x|+1,x∈[-1,4]的定义域不关于原点对称,所以f(x)是非奇非偶函数.(4)方法一(定义法):当x>0时,f(x)=-x2+2x+1,-x<0,f(-x)=(-x)2+2(-x)-1=x2-2x-1=-f(x);当x<0时,f(x)=x2+2x-1,-x>0,f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-f(x).所以f(x)为奇函数.方法二(图象法):作出函数f(x)的图象,由奇函数的图象关于原点对称的特征知函数f(x)为奇函数.(5)已知f(x)的定义域为(-1,1),关于原点对称.因为f(x)=(x-1)1+x1-x=-(1-x)(1+x),所以f(-x)=-(1+x)(1-x)=f(x),所以f(x)是偶函数.【解题技法】判断函数的奇偶性的方法(1)定义法:若函数的定义域不是关于原点对称的区间,则可立即判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断f(-x)是否等于±f(x).(2)图象法:奇(或偶)函数的充要条件是它的图象关于原点(或y轴)对称.(3)性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(注:利用上述结论时要注意各函数的定义域)【对点训练】1.(多选题)下列命题中正确的是 ( )A.奇函数的图象一定过坐标原点B.函数y=xsin x是偶函数C.函数y=|x+1|-|x-1|是奇函数D.函数y=x2-xx-1是奇函数【解析】选BC.对于A,只有奇函数在x=0处有意义时,函数的图象过原点,所以A不正确;对于B,因为函数y=xsin x的定义域为R且f(-x)=(-x)sin(-x)=f(x),所以该函数为偶函数,所以B正确;对于C,函数y=|x+1|-|x-1|的定义域为R,关于原点对称,且满足f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x),即f(-x)=-f(x),所以函数为奇函数,所以C正确;对于D,函数y=x2-xx-1满足x-1≠0,即x≠1,所以函数的定义域不关于原点对称,所以该函数为非奇非偶函数,所以D不正确.2.设函数f(x)=1x2-2x+3,则下列函数中为偶函数的是 ( )A.f(x+1) B.f(x)+1C.f(x-1) D.f(x)-1【解析】选A.f(x)=1x2-2x+3=1(x-1)2+2,则f(x+1)=1x2+2,因为y=1x2+2是偶函数,所以f(x+1)为偶函数.B,C,D既不是奇函数,也不是偶函数.3.已知函数f(x)=sin x,g(x)=ex+e-x,则下列结论正确的是 ( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数【解析】选C.选项A,f(x)g(x)=(ex+e-x)sin x,f(-x)g(-x)=(e-x+ex)sin(-x)=-(ex+e-x)sin x=-f(x)g(x),是奇函数,结论错误;选项B,|f(x)|g(x)=|sin x|(ex+e-x),|f(-x)|g(-x)=|sin(-x)|(e-x+ex)=|sin x|(ex+e-x)=|f(x)|g(x),是偶函数,结论错误;选项C,f(x)|g(x)|=|ex+e-x|sin x,f(-x)|g(-x)|=|e-x+ex|sin(-x)=-|ex+e-x|sin x=-f(x)|g(x)|,是奇函数,结论正确;选项D,|f(x)g(x)|=|(ex+e-x)sin x|,|f(-x)g(-x)|=|(e-x+ex)sin(-x)|=|(ex+e-x)sin x|=|f(x)g(x)|,是偶函数,结论错误.考点二 函数奇偶性的应用角度1 利用奇偶性求值(解析式)[例2](1)(2023·海南模拟)已知函数f(x)为奇函数,g(x)为偶函数,且f(x)-g(x)=ex,则f(1)g(1)= ( )A.e2+1e B.e2-1e C.1-e21+e2 D.1+e21-e2【解析】选C.根据题意,f(x)-g(x)=ex,则f(1)-g(1)=e①,f(-1)-g(-1)=-f(1)-g(1)=e-1=1e,变形可得f(1)+g(1)=-1e②,联立①②可得,f(1)=e-1e2,g(1)=-e+1e2,则有f(1)g(1)=e-1e2-e+1e2=1-e21+e2.(2)设f(x)为奇函数,且当x≥0时,f(x)=ex-1,则当x<0时,f(x)= ( )A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1【解析】选D.依题意得,当x<0时,-x>0,f(x)=-f(-x)=-(e-x-1)=-e-x+1.角度2 利用奇偶性解不等式[例3](1)函数f(x)是定义域为R的奇函数,f(x)在(0,+∞)上单调递增,且f(2)=0.则不等式f(x)-2f(-x)x>0的解集为 ( )A.(-2,2)B.(-∞,0)∪(0,2)C.(2,+∞)D.(-∞,-2)∪(2,+∞)【解析】选D.因为f(x)是定义域为R的奇函数,所以f(0)=0,又f(x)在(0,+∞)上单调递增,且f(2)=0,所以f(x)的大致图象如图所示.由f(-x)=-f(x)可得,f(x)-2f(-x)x=f(x)+2f(x)x=3f(x)x>0,因为x在分母位置,所以x≠0.当x<0时,只需f(x)<0,由图象可知x<-2;当x>0时,只需f(x)>0,由图象可知x>2.综上,不等式的解集为(-∞,-2)∪(2,+∞).(2)已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)0,得x>12或x<-12,因为f(x)是偶函数,所以f(-x)=f(x),得(-x+a)ln(-2x-1-2x+1)=(x+a)ln(2x-12x+1),即(-x+a)ln(2x+12x-1)=(x+a)ln(2x-12x+1),即(-x+a)ln(2x-12x+1)-1=(x+a)ln(2x-12x+1),则(x-a)ln(2x-12x+1)=(x+a)ln(2x-12x+1),所以x-a=x+a,得-a=a,得a=0.解法二:f(x)为偶函数,则有f(-1)=f(1),即(-1+a)ln 3=(1+a)ln 13,解得a=0.解法三:g(x)=ln 2x-12x+1,g(-x)=-g(x),则g(x)为奇函数,若f(x)=(x+a)·ln 2x-12x+1为偶函数,则h(x)=x+a为奇函数,得a=0.(2)(2022·全国乙卷)若f(x)=ln|a+11-x|+b是奇函数,则a=__________,b=__________. 【解析】若a=0,则函数f(x)的定义域为{x|x≠1},不关于原点对称,不具有奇偶性,所以a≠0.由函数解析式有意义可得,x≠1且a+11-x≠0,所以x≠1且x≠1+1a.因为函数f(x)为奇函数,所以定义域必须关于原点对称,所以1+1a=-1,解得a=-12,所以f(x)=ln|1+x2(1-x)|+b,定义域为{x|x≠1且x≠-1}.由f(0)=0得ln 12+b=0,所以b=ln 2,即f(x)=ln|-12+11-x|+ln 2=ln|1+x1-x|,在定义域内满足f(-x)=-f(x),符合题意.综上,a=-12,b=ln 2.答案:-12 ln 2【解题技法】已知函数奇偶性可以解决的三个问题(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出.(3)求解析式中的参数:利用待定系数法求解,根据f(x)±f(-x)=0得到关于参数的恒等式,由系数的对等性得参数的方程或方程组,进而得出参数的值.【对点训练】1.(2023·武汉模拟)已知函数f(x)=x3+1,x>0,ax3+b,x<0为偶函数,则2a+b等于 ( )A.3 B.32 C.-12 D.-32【解析】选B.由已知得,当x>0时,-x<0,f(-x)=-ax3+b,因为f(x)为偶函数,所以f(-x)=f(x),即x3+1=-ax3+b,所以a=-1,b=1,所以2a+b=2-1+1=32.2.(一题多法)(2023·全国乙卷)已知f(x)=xexeax-1是偶函数,则a= ( )A.-2 B. -1 C. 1 D. 2【解析】选D.解法一:因为f(x)=xexeax-1的定义域为{x|x≠0},f(x)为偶函数,所以f(-x)=f(x),所以-xe-xe-ax-1=xexeax-1,所以xeax-xeax-1=xexeax-1,所以ax-x=x,所以a=2.解法二:由f(x)为偶函数得f(-1)=f(1),故-e-1e-a-1=eea-1①,又-e-1e-a-1=e-11-e-a=ea-1ea-1,代入①得ea-1ea-1=eea-1,所以ea-1=e,从而a-1=1,故a=2,经检验,满足f(x)为偶函数.3.若函数f(x-2)为奇函数,f(-2)=0,f(x)在区间[-2,+∞)上单调递减,则f(3-x)>0的解集为__________. 【解析】因为f(x-2)为奇函数,所以f(x-2)的图象的对称中心为(0,0).又因为f(x)的图象可由f(x-2)的图象向左平移2个单位长度得到,所以f(x)的图象关于点(-2,0)中心对称.因为f(x)在[-2,+∞)上单调递减,所以f(x)在(-∞,-2]上也单调递减,所以f(3-x)>0=f(-2),即3-x<-2,解得x>5,所以解集为(5,+∞).答案:(5,+∞)考点三 函数周期性及应用[例5](1)(2023·长沙模拟)定义在R上的函数f(x)满足f(x+1)=f(x)-2,则下列是周期函数的是 ( )A.y=f(x)-x B.y=f(x)+xC.y=f(x)-2x D.y=f(x)+2x【解析】选D.依题意,定义在R上的函数f(x)满足f(x+1)=f(x)-2,所以f(x+1)+2(x+1)=f(x)+2x,所以y=f(x)+2x是周期为1的周期函数.(2)函数f(x)满足f(x-2)=f(x+2),当x∈(0,2)时,f(x)=x2,则f(2 025)=________. 【解析】由f(x-2)=f(x+2)知f(x)的周期为4,故f(2 025)=f(506×4+1)=f(1)=1.答案:1(3)已知f(x)是定义在R上的函数,并且f(x+3)=-1f(x),当10,则f(2 023)=__________. 【解析】当x>0时,f(x)=f(x-1)-f(x-2),①所以f(x+1)=f(x)-f(x-1),②①+②得f(x+1)=-f(x-2),即f(x+3)=-f(x),f(x+6)=-f(x+3)=f(x),所以f(x)的周期为6,所以f(2 023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.答案:-1考点四 函数的对称性及应用[例6](1)(多选题)已知函数y=f(x)的图象关于直线x=1对称,则下列结论成立的是 ( )A.f(x+1)为偶函数B.f(1+x)=f(1-x)C.f(1+x)+f(1-x)=0D.f(1)=0【解析】选AB.由于y=f(x)的图象关于直线x=1对称,则f(1+x)=f(1-x),所以f(x+1)为偶函数,故A,B选项正确,C选项错误;如f(x)=(x-1)2+1,函数f(x)的图象关于直线x=1对称,但f(1)=1≠0,故D选项错误.(2)(2023·海口模拟)已知函数f(x)是定义在R上的奇函数,函数g(x)=|x-2|·f(x)的图象关于直线x=2对称,若f(-1)=-1,则g(3)= ( )A.5 B.1 C.-1 D.-5【解析】选B.因为g(x)的图象关于直线x=2对称,则g(x+2)=|x|f(x+2)是偶函数,g(2-x)=|-x|f(2-x)=|x|f(2-x),所以|x|f(2-x)=|x|f(x+2)对任意的x∈R恒成立,所以f(2-x)=f(2+x).因为f(-1)=-1且f(x)为奇函数,所以f(3)=f(2+1)=f(2-1)=-f(-1)=1,因此g(3)=|3-2|f(3)=1.(3)已知函数y=f(x)-2为奇函数,g(x)=2x+1x,且f(x)与g(x)图象的交点分别为(x1,y1),(x2,y2),…,(x6,y6),则y1+y2+…+y6=____________. 【解析】因为函数y=f(x)-2为奇函数,所以函数y=f(x)的图象关于点(0,2)对称,又g(x)=2x+1x=1x+2,其图象也关于(0,2)对称,所以两函数图象交点关于(0,2)对称,则y1+y2+…+y6=3×4=12.答案:12【解题技法】函数对称性问题的解题关键(1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题.(3)①若f(a+x)=f(a-x),对称轴:x=a;②若f(a+x)=f(b-x),对称轴:x=a+b2;③若f(a+x)+f(a-x)=0,对称中心:(a,0);④若f(a+x)+f(b-x)=c,对称中心:(a+b2,c2).【对点训练】1.(多选题)(2023·承德模拟)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是 ( )A.f(x)的图象关于直线x=2对称B.f(x)的图象关于点(2,0)对称C.f(x)的周期为4D.y=f(x+4)为偶函数【解析】选ACD.因为f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故A正确,B错误;因为函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),所以f(x+4)=f(x),所以T=4,故C正确;因为T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故D正确.2.若函数f(x)=(1-x2)(x2+ax+b)的图象关于x=-2对称,则a=________,b=________. 【解析】f(x)最多有4个零点,显然已有2个,x=±1,又由对称性可知,另外两个零点为-3和-5,所以x2+ax+b=0的两根为-3和-5,所以a=8,b=15.答案:8 15课程标准1.了解函数奇偶性的概念和几何意义.2.会运用基本初等函数的图象分析函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.考情分析考点考法:高考命题常以基本初等函数为载体,考查函数的奇偶性、周期性和图象的对称性及其应用.函数的奇偶性与单调性、周期性的综合问题是高考热点,常以选择题的形式出现.核心素养:数学抽象、逻辑推理、直观想象奇偶性定义图象偶函数设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称类型辨析改编易错高考题号1432A由于偶函数的定义域关于原点对称,因此y=x2在(0,+∞)上不具有奇偶性×B由奇函数定义可知,若f(x)为奇函数,且在x=0处有意义时才满足f(0)=0×
相关资料
更多