数学22.3 实际问题与二次函数同步测试题
展开
这是一份数学22.3 实际问题与二次函数同步测试题,共11页。试卷主要包含了之间满足一次函数关系等内容,欢迎下载使用。
典例1.(2024·河南南阳市·九年级期末)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.
(1)求S与x的函数关系式及x值的取值范围;
(2)要围成面积为45m2的花圃,AB的长是多少米?
(3)当AB的长是多少米时,围成的花圃的面积最大?
变式1-1.(2024·自贡市九年级期末)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2, 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
变式1-2.(2024·浙江九年级期中)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
典例2.(2024·江西南昌市·九年级期中)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.
(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;
(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
变式2-1.(2024·江西南昌市·九年级期中)有一辆宽为的货车(如图①),要通过一条抛物线形隧道(如图②).为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为.已知隧道的跨度为,拱高为.
(1)若隧道为单车道,货车高为,该货车能否安全通行?为什么?
(2)若隧道为双车道,且两车道之间有的隔离带,通过计算说明该货车能够通行的最大安全限高.
变式2-2.(2024·湖州市九年级期中)如图所示,某河面上有一座抛物线形拱桥,桥下水面在正常水位时,宽为,若水位上升,水面就会达到警戒线这时水面宽为.
(1)建立适当的平面直角坐标系并求出抛物线的解析式;
(2)若洪水到来时,水位以每小时的速度上升,从警戒线开始,再持续多少小时就能到达拱桥的拱顶?
典例3.(2024·河南信阳市·九年级期中)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
变式3-1.(2024·福建龙岩市·九年级期中)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.
(1)直接写出与的函数关系式;
(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
变式3-2.(2024·无锡市九年级期末)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
典例4.(2024·河南信阳市九年级期末)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
变式4-1.(2024·山东济宁市·九年级期中)初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
变式4-2.(2024·天津九年级期末)运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h(m)与它的飞行时间t(s)满足二次函数关系,t与h的几组对应值如下表所示.
(1)求h与t之间的函数关系式(不要求写t的取值范围);
(2)求小球飞行3s时的高度;
(3)问:小球的飞行高度能否达到22m?请说明理由.
典例5.(2024·夏津县九年级期中)要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?
变式5-1.(2024·江苏盐城市·九年级期末)某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y(m)与喷出水流喷嘴的水平距离x(m)之间满足
(l)喷嘴能喷出水流的最大高度是多少?
(2)喷嘴喷出水流的最远距离为多少?
变式5-2.(2024·福建宁德市·九年级期末)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:
(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;
(2)写出左边那条抛物线的表达式;
(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?
1.(2024·山西晋中市·九年级期末)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.B.C.D.
2.(2024·福建厦门市九年级期中)从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④B.①②C.②③④D.②③
3.(2024·广东广州市九年级期中)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )
A.25min~50min,王阿姨步行的路程为800m
B.线段CD的函数解析式为
C.5min~20min,王阿姨步行速度由慢到快
D.曲线段AB的函数解析式为
4.(2024·株洲市九年级期中)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是( )
A.此抛物线的解析式是y=﹣x2+3.5
B.篮圈中心的坐标是(4,3.05)
C.此抛物线的顶点坐标是(3.5,0)
D.篮球出手时离地面的高度是2m
5.(2024·浙江九年级期中)向空中发射一枚炮弹,第x秒时的高度为y米,且高度与时间的关系为,若此炮弹在第6秒与第15秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
A.第8秒B.第10秒C.第12秒D.第15秒
6.(2024·渑池县九年级期中)2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为( )
A. B.
C.D.
7.(2024·宜昌市九年级期中)若飞机着陆后滑行的距离与滑行的时间之间的关系式为s=60t-1.5t2,则函数图象大致为( )
A..C.D.
8.(2024·河南许昌市·九年级期中)如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔加设一根不锈钢的支柱,构件的最高点距底部,则该抛物线形构件所需不锈钢支柱的总长度为( )
A.B.C.D.
9.(2024·衢州市九年级期中)某种礼炮的升空高度()与飞行时间()的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为( )
A.B.C.D.
10.(2024·宁阳县九年级期末)如图,已知和均为等腰直角三角形,,,、、、在同一条直线上,开始时点与点重合,让沿直线向右移动,最后点与点重合,设两三角形重合面积为,点移动的距离为,则关于的大致图象是( )
A.B.
C.D.
11.(2024·浙江九年级期中)如图,以两条互相垂直的街道为坐标轴,某“理想社区”分布形如抛物线,若建公交站点D(在抛物线上),使公交车行驶到十字路口(原点O)的路线最短(公交车只能平行或垂直于街道行驶)则该路线的长度为________.
12.(2024·浙江温州市·九年级期末)各种盛水容器可以制作精致的家用流水景观(如图1).
科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为,如果在离水面竖直距离为h(单位:)的地方开大小合适的小孔,那么从小孔射出水的射程s(单位:)与h的关系式为,则射程s最大值是_______.(射程是指水流落地点离小孔的水平距离)
13.(2024·浙江九年级期末)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是.在飞机着陆滑行中,则飞机着陆后滑行的时间是_____s.
14.(2024·浙江九年级期末)某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离是_____米.
15.(2024·浙江九年级期末)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(,且x为整数)出售,可卖出件,若使利润最大,则每件商品的售价应为_______元.
16.(2024·浙江温州市·九年级期末)在2024年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.
(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式_________;每天所得销售利润w(元)与销售单价x(元)之间的函数关系式_________.
(2)若小明想每天获得该种类型口罩的销售利润为2000元时,则销售单价应定为多少元?
(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定为多少元时,此时利润最大,最大利润是多少?
17.(2024·浙江杭州市·九年级期末)如图,用长的木条制成如图形状的矩形框,矩形框中间有一横档.设矩形框的宽为,所围成的面积为.
(1)求关于的函数表达解析式和自变量的取值范围;
(2)能围成面积比更大的矩形框吗?如果能,求出最大面积并说明围法.t(s)
0
0.5
1
1.5
2
…
h(m)
0
8.75
15
18.75
20
…
相关试卷
这是一份数学人教版21.2.1 配方法课时作业,共5页。
这是一份初中数学人教版九年级上册21.1 一元二次方程测试题,共14页。
这是一份人教版九年级上册21.1 一元二次方程课时作业,共4页。