人教A版高中数学必修第二册第10章10-3-2随机模拟学案
展开
这是一份人教A版高中数学必修第二册第10章10-3-2随机模拟学案,共12页。
10.3.2 随机模拟在求解频率与概率的关系时需要做大量的重复试验去验证,既费时又费力,有没有更好的其他办法可以替代试验呢? 知识点 随机模拟1.产生随机数的方法(1)利用计算器或计算机软件产生随机数.(2)构建模拟试验产生随机数.2.蒙特卡洛方法利用随机模拟解决问题的方法称为蒙特卡洛方法.思考辨析(正确的打“√”,错误的打“×”)(1)随机数是用计算机或计算器随便按键产生的数. ( )(2)不能用伪随机数估计概率. ( )(3)用随机模拟试验估计事件的概率时,试验次数越多,所得的估计值越接近实际值. ( )[答案] (1)√ (2)× (3)√ 类型1 随机数的产生方法【例1】 要产生1~25之间的随机整数,你有哪些方法?[解] 法一:可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌均匀,然后从中摸出一个,这个球上的数就称为随机数,放回后重复以上过程,就得到一系列的1~25之间的随机整数.法二:可以利用计算机产生随机数,以Excel为例:(1)选定A1格,输入“=RANDBETWEEN(1,25)”,按Enter键,则在此格中的数是随机产生的;(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快得到了100个1~25之间的随机数,相当于做了100次随机试验. 随机数产生的方法比较[跟进训练]1.某校高一年级共20个班,1 200名学生,期中考试时如何把学生分配到40个考场中去?[解] 要把1 200人分到40个考场,每个考场30人,可用计算机完成.(1)按班级、学号顺序把学生档案输入计算机.(2)用随机函数按顺序给每个学生一个随机数(每人都不相同).(3)使用计算机的排序功能按随机数从小到大排列,可得到1 200名学生的考试号0 001,0 002,…,1 200,然后0 001~0 030为第一考场,0 031~0 060为第二考场,依次类推. 类型2 简单的随机模拟试验的应用【例2】 一个袋中有7个大小、形状相同的小球,6个白球,1个红球,现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次摸到红球的概率.[解] 用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间(包括1和7)取整数值的随机数.因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.如下,产生20组随机数:666 743 671 464 571 561 156 567 732 375716 116 614 445 117 573 552 274 114 662就相当于做了20次试验,在这些数组中,前两个数字不是7,第三个数字恰好是7就表示第一次、第二次摸到的是白球,第三次摸到的是红球,它们分别是567和117,共两组,因此恰好第三次摸到红球的概率约为220=0.1. 在设计随机模拟试验时,注意以下两点:(1)要根据具体的事件设计恰当的试验,使试验能够真正地模拟随机事件.(2)注意用不同的随机数来表示不同的随机事件的发生.[跟进训练]2.在一个盒中装有10支圆珠笔,其中7支一级品,3支二级品,任取一支,用模拟方法求取到一级品的概率.[解] 设事件A:“取到一级品”.(1)用计算机的随机函数RANDBETWEEN(1,10)或计算器产生1到10之间的整数随机数,分别用1,2,3,4,5,6,7表示取到一级品,用8,9,10表示取到二级品.(2)统计试验总次数N及其中出现1至7之间数的次数N1.(3)计算频率f n(A)=N1N,即为事件A的概率的近似值. 类型3 较复杂的随机模拟试验的应用【例3】 A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生0-9之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:102 798 391 925 173 845 812 529 769683 231 307 592 027 516 588 730 113977 539则这三天中至少有两天有强浓雾的概率近似为( )A.14 B.25 C.710 D.15D [在20组随机数中表示三天中至少有两天有强浓雾的可以通过列举得到,共4组随机数:798,769,588,977,所求概率为420=15.故选D.] 利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件.(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数.(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复. [跟进训练]3.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 013 320 122 103 233由此可以估计,恰好第三次就停止的概率为( )A.19 B.16 C.29 D.518B [经随机模拟产生的18组随机数中,恰好第三次就停止包含的样本点有:023,123,132,共3个,由此可以估计,恰好第三次就停止的概率为318=16.故选B.]1. 用随机模拟的方法估计概率时,其准确程度决定于( )A.产生的随机数的大小B.产生的随机数的个数C.随机数对应的结果D.产生随机数的方法B [用随机模拟的方法估计概率时,产生的随机数越多,准确程度越高,故选B.]2.掷两枚骰子,用随机模拟方法估计出现点数之和为9的概率时,产生的整数值随机数中,每几个数字为一组( )A.1 B.2 C.9 D.12B [由于掷两枚骰子,所以产生的整数值随机数中,每2个数字为一组.]3.已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A.0.35 B.0.25 C.0.20 D.0.15B [由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25.故选B.]4.在用随机数(整数)模拟“有4个男生和5个女生,从中选4个,求选出2个男生2个女生”的概率时,可让计算机产生1~9的随机整数,并用1~4代表男生,用5~9代表女生,因为是选出4个,所以每4个随机数作为一组.若得到的一组随机数“4678”,则它代表的含义是________.选出的4人中,只有1个男生 [用1~4代表男生,用5~9代表女生,4678表示1男3 女,即选出的4人中,只有1个男生.]回顾本节知识,自主完成以下问题:1.产生随机数的方法有哪些?[提示] 产生随机数的方法有抽签法、利用计算机或计算器产生随机数的随机模拟方法等.2.如何用随机模拟的方法估计概率?[提示] 用随机模拟法估计概率的主要步骤:(1)设计概率模型.(2)进行模拟试验.(3)统计试验结果,估计概率.“黄金72小时”中的概率当地震等地质灾害发生后,在媒体上经常可以看到“黄金72小时”这几个字.你知道它表示的是什么意思吗?医学研究和统计表明,在没有食物尤其是没有水的条件下,生命的存续期一般不会超过3天.国际救援界认为,在地震等地质灾害发生后的72小时内,被救出人员的存活率随时间的消逝呈递减趋势:第一天(即24小时内),存活率约为90%;第二天,存活率为50%—60%;第三天,存活率为20%—30%.再往后的话,存活率将进一步减少.这里的存活率可以用概率来理解:被救出的人员,如果是在24小时内被发现的,那么该人员生还的概率为90%;如果是在第24—48小时内被发现的,那么生还的概率为50%—60%;如果是第48—72小时内发现的,那么生还的概率为20%—30%.这就意味着,当地震等地质灾害发生后,应该“与时间赛跑”,利用各种手段和机会尽可能早地发现被困人员.需要注意的是,概率描述的只是事件发生的可能性大小,发生的可能性小(即概率小)并不代表不会发生.统计数据表明,地震六天后,被埋人员生还的概率几乎为零.但是这样的事例并不是没有:2005年巴基斯坦7.6级地震中,一名青年被埋27天后获救生还;2008年我国汶川地震中,一位60岁的老人被困11天后获救生还;等等.因此,几乎所有的救援工作,在“黄金72小时”之外都会继续,以发现更多生命的奇迹.课时分层作业(五十) 随机模拟一、选择题1.(多选)下列能产生随机数的是( )A.抛掷骰子试验B.抛硬币C.计算器D.正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体ABC [D项中,出现2的概率为26,出现1,3,4,5的概率均是16,则D项不能产生随机数.]2.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12 B.13 C.14 D.15A [抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12.]3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )A.0.50 B.0.45 C.0.40 D.0.35A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的一个.它们分别是93,28,45,25,73,93,02,48,30,35,共10个.因此估计所求的概率为1020=0.50.]二、填空题4.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是________.1b-a+1 [[a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b-a+1.]5.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率约为________.(保留3位有效数字)0.367 [产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707,共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367.]三、解答题6.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,若该篮球爱好者连续投篮4次,求至少投中3次的概率.用随机模拟的方法估计上述概率.[解] 利用计算机或计算器产生0到9之间取整数值的随机数,用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%,因为投篮4次,所以每4个随机数作为1组.例如5727,7895,0123,…,4560,4581,4698,共100组这样的随机数,若所有数组中没有7,8,9,0或只有7,8,9,0中的一个数的数组的个数为n,则至少投中3次的概率近似值为n100.7.抛掷两颗相同的骰子,用随机模拟方法估计“上面点数的和是6的倍数”的概率时,用1,2,3,4,5,6分别表示上面的点数是1,2,3,4,5,6,用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足上面点数的和是6的倍数:________(选填“是”或“否”).否 [16表示第一颗骰子向上的点数是1,第二颗骰子向上的点数是6,则上面点数的和是1+6=7,不表示和是6的倍数.]8.在一个大转盘上,盘面被均匀地分成12份,分别写有1~12这12个数字,其中2,4,6,8,10,12这6个区域对应的奖品是文具盒,而1,3,5,7,9,11这6个区域对应的奖品是书包.游戏规则是转盘转动后指针停在哪一格,则继续向前前进相应的格数.例如:你转动转盘停止后,指针落在4所在区域,则还要往前前进4格,到标有8的区域,此时8区域对应的奖品就是你的,依此类推.请问:小明在玩这个游戏时,得到的奖品是书包的概率是________.0 [∵转盘停止后,指针所在区域再前进相应格数后所在位置均为标为偶数的区域,又∵得到书包对应的区域均标为奇数,∴得到的奖品为书包的概率为0.]9.某市为了了解一周内学生的线上学习情况,从该市抽取了1 000名学生进行调查,根据所得信息制作了如图所示的频率分布直方图.(1)为了估计从该市任意抽取的3名同学中恰有2人线上学习时间在[200,300)的概率P,特设计如下随机模拟试验:先由计算器产生0到9之间取整数值的随机数,依次用0,1,2,3,…,9的前若干个数字表示线上学习时间在[200,300)内,剩余的数字表示线上学习时间不在[200,300)内;再以每三个随机数为一组,代表线上学习的情况.假设用上述随机模拟方法产生了如下30组随机数:907 966 191 925 271 569 812 458 932683 431 257 393 027 556 438 873 730113 669 206 232 433 474 537 679 138598 602 231请根据这些随机数估计概率P;(2)为了进一步进行调查,用比例分配的分层随机抽样方法从这1 000名学生中抽取20名学生,在抽取的20人中,再从线上学习时间在[350,450)的同学中任意选择2名,求这2名同学来自同一组的概率.[解] (1)由频率分布直方图可知,线上学习时间在[200,300)的频率为(0.002+0.006)×50=0.4,所以可以用数字0,1,2,3表示线上学习时间在[200,300)内,数字4,5,6,7,8,9表示线上学习时间不在[200,300)内.观察题中随机数组可得,3名同学中恰有2人线上学习时间在[200,300)的有191,271,812,932,431,393,027,730,206,433,138,602,共12个.用频率估计概率可得,该市3名同学中恰有2人线上学习时间在[200,300)的概率P=1230=0.4.(2)抽取的20人中,线上学习时间在[350,450)的同学有20×(0.003+0.002)×50=5(人),其中线上学习时间在[350,400)的同学有3名,设为A,B,C,线上学习时间在[400,450)的同学有2名,设为a,b,用(x,y)表示样本空间中的样本点,则从5名同学中任取2名的样本空间Ω={(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)},共10个样本点,用M表示“2名同学来自同一组”这一事件,则M={(A,B),(A,C),(B,C),(a,b)},共4个样本点,所以P(M)=410=0.4.学习任务了解随机模拟的含义,会利用随机模拟估计概率.(数学建模、数学运算)方法抽签法用计算器或计算机产生优点保证机会均等操作简单,省时、省力缺点耗费大量人力、物力、时间,或不具有实际操作性由于是伪随机数,故不能保证完全等可能