综合解析-人教版数学八年级上册期中测评试题 A卷(含答案详解)
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、如图,若,则下列结论中不一定成立的是( )
A.B.
C.D.
2、下列图形为正多边形的是( )
A.B.C.D.
3、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1B.1:2:3C.2:3:4D.3:4:5
4、如图,B,C,E,F四点在一条直线上,下列条件能判定与全等的是( )
A.B.
C.D.
5、如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=( )
A.80°B.70°C.60°D.90°
二、多选题(5小题,每小题4分,共计20分)
1、如图,在中,,,点E在的延长线上,的角平分线与的角平分线相交于点D,连接,下列结论中正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
2、已知三角形的六个元素如图所示,则甲、乙、丙三个三角形中与全等的是( )
A.甲B.乙C.丙D.不能确定
3、如图,BE=CF,AB=DE,添加下列哪些条件不能推证△ABC≌△DEF( )
A.BC=EFB.∠C=∠FC.AB∥DED.∠A=∠D
4、下列作图语句不正确的是( )
A.作射线AB,使AB=aB.作∠AOB=∠a
C.延长直线AB到点C,使AC=BCD.以点O为圆心作弧
5、如图,EA∥DF,AE=DF,要使△AEC≌△DFB,可以添加的条件有( )
A.AB=CDB.AC=BDC.∠A=∠DD.∠E=∠F
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如图,图中以BC为边的三角形的个数为_____.
2、如图点D、E分别在的边、上,与交于点F,,则_______.
3、如果一个正多边形的一个内角是135°,则这个正多边形是_____.
4、如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是______.(只填一个即可)
5、如图,在中,AE是的角平分线,D是AE延长线上一点,于点H.若,,则____________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
四、解答题(5小题,每小题8分,共计40分)
1、在中,,点D是直线BC上一点(点D不与点B,C重合),以AD为一边在AD的右侧作,使,,连接CE.
(1)如图(1),若点D在线段BC上,和之间有怎样的数量关系?(不必说明理由)
(2)若,当点D在射线BC上移动时,如图(2),和之间有怎样的数量关系?说明理由.
2、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.
(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;
(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).
3、已知如图,△ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MA⊥CE,AN⊥BD,AM=AN.求证:EM=DN.
4、如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.
(1)求证:AD垂直平分EF;
(2)若AB+AC=10,S△ABC=15,求DE的长.
5、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,,.
(1)求证:;
(2)求的度数.
-参考答案-
一、单选题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、A
【解析】
【分析】
根据翻三角形全等的性质一一判断即可.
【详解】
解:∵△ABC≌△ADE,
∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,
∴∠BAD=∠CAE,
∵AD=AB,
∴∠ABD=∠ADB,
∴∠BAD=180°-∠ABD-∠ADB,
∴∠CDE=180°-∠ADB-ADE,
∵∠ABD=∠ADE,
∴∠BAD=∠CDE
故B、C、D选项不符合题意,
故选:A.
【考点】
本题考了三角形全等的性质,解题的关键是三角形全等的性质.
2、D
【解析】
【分析】
根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案.
【详解】
根据正多边形的定义,得到D中图形是正五边形.
故选D.
【考点】
本题考查了正多边形,关键是掌握正多边形的定义.
3、C
【解析】
【分析】
过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得.
【详解】
解:如图,过点作于点,作于点,作于点,
是的三条角平分线,
,
,
故选:C.
【考点】
本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.
4、A
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
根据全等三角形的判定条件逐一判断即可.
【详解】
解:A、∵,
∴,
∵,
∴,即
在和中
∵
∴,故A符合题意;
B、∵,∴,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;
C、∵,∴,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;
D、∵,∴,,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;
故选A.
【考点】
本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
5、A
【解析】
【分析】
先根据平行线的性质求出∠C的度数,再由三角形外角的性质可得出结论.
【详解】
∵AB∥CD,∠1=45°,
∴∠C=∠1=45°.
∵∠2=35°,
∴∠3=∠2+∠C=35°+45°=80°.
故选A.
【考点】
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
二、多选题
1、ACD
【解析】
【分析】
根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠DBC,然后利用三角形的外角性质求出∠DOC,再根据邻补角可得∠ACE=120°,由角平分线的定义求出∠ACD=60°,再利用三角形的内角和定理列式计算即可∠BDC,根据BD平分∠ABC和CD平分∠ACE,可得AD平分∠BAC的邻补角,由邻补角和角平分线的定义可得∠DAC.
【详解】
解:∵∠ABC=50°,∠ACB=60°,
∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°, 故A选项正确,
∵BD平分∠ABC,
∴∠DBC=∠ABC=×50°=25°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵∠DOC是△OBC的外角,
∴∠DOC =∠OBC+∠ACB=25°+60°=85°, 故B选项不正确;
∵∠ACB=60°,
∴∠ACE=180°-60°= 120°,
∵CD平分∠ACE,
∴∠ACD=∠ACE=60°,
∴∠BDC=180°-85°-60°=35°,故C选项正确;
∵BD平分∠ABC,
∴点D到直线BA和BC的距离相等,
∵CD平分∠ACE
∴点D到直线BC和AC的距离相等,
∴点D到直线BA和AC的距离相等,
∴AD平分∠BAC的邻补角,
∴∠DAC=(180°-70°)=55°, 故D选项正确.
故选ACD.
【考点】
本题主要考查了角平分线的定义,性质和判定,三角形的内角和定理和三角形的外角性质,解决本题的关键是要熟练掌握角平分线的定义,性质和判定.
2、BC
【解析】
【分析】
根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.
【详解】
解:已知△ABC中,∠B=50°,∠C=58°,∠A=72°,BC=a,AB=c,AC=b,
图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;
图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和△ABC全等;
图丙:有两边及其夹角,符合三角形全等的判定定理(SAS),能推出两三角形全等;
故选:BC.
【考点】
本题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.
3、ABD
【解析】
【分析】
根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.
【详解】
解:∵BE=CF,
∴BE+EC=CF+EC,
∴BC=EF,
又∵AB=DE,
∴添加条件BC=EF,根据SS不能判断△ABC≌△DEF,故选项A符合题意;
添加条件∠C=∠F,根据SSA不能判断△ABC≌△DEF,故选项B符合题意;
添加条件AB∥DE,可以得到∠B=∠DEF,根据(SAS)可判断△ABC≌△DEF,故选项C不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
添加条件∠A=∠D,根据SSA不能判断△ABC≌△DEF,故选项D符合题意;
故选:ABD.
【考点】
本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
4、ACD
【解析】
【分析】
根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;.
【详解】
解:A、射线是不可度量的,故本选项错误;
B、∠AOB=∠α,故本选项正确;
C、直线向两方无限延伸没有延长线,故本选项错误;
D、需要说明半径的长,故选项错误.
故选:ACD.
【考点】
本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质.
5、ABD
【解析】
【分析】
由AE∥DF可得∠A=∠D,要判定△AEC≌△DFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是∠E=∠F或者是∠ACE=∠DBF,结合四个选项即可求解.
【详解】
解:∵AE∥DF,
∴∠A=∠D,
A、∵AB=CD,
∴AB+BC=CD+BC,即AC=DB,
又∵AE=DF,∠A=∠D,
∴根据SAS能推出△AEC≌△DFB,故本选项符合题意;
B、∵AC=BD,AE=DF,∠A=∠D,
∴根据SAS能推出△AEC≌△DFB,故本选项符合题意;
C、∵∠A=∠D,AE=DF,
∴不能推出△AEC≌△DFB,故本选项不符合题意;
D、∵∠E=∠F,AE=DF,∠A=∠D,
∴根据ASA能推出△AEC≌△DFB,故本选项符合题意;
故选:ABD.
【考点】
本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
三、填空题
1、4.
【解析】
【分析】
根据三角形的定义即可得到结论.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,
∴以BC为公共边的三角形的个数是4个.
故答案为:4.
【考点】
此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.
2、11
【解析】
【分析】
根据,,得出三角形面积之间的数量关系,设,,则,,列出二元一次方程组,解方程即可解答.
【详解】
如图:连接
设,,则,
,
,,
解得:
故答案为:
【考点】
本题考查了三角形面积之间的数量关系,解二元一次方程,根据线段之间的数量关系得出三角形的面积关系,正确列出二元一次方程是解题关键.
3、正八边形
【解析】
【分析】
根据正多边形的外角和为即可求出正多边形的边数.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:∵正多边形的一个内角是135°,
∴它的每一个外角为45°.
又因为多边形的外角和恒为360°,
360°÷45°=8,
即该正多边形为正八边形.
故答案为:正八边形.
【考点】
本题主要考查正多边形的外角和,掌握正多边形的外角和是解决问题的关键.
4、AD=AC(∠D=∠C或∠ABD=∠ABC等)
【解析】
【分析】
利用全等三角形的判定方法添加条件即可求解.
【详解】
解:∵∠DAB=∠CAB,AB=AB,
∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;
当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;
当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.
故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).
【考点】
本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件.
5、10°
【解析】
【分析】
在△EFD中,由三角形的外角性质知:∠HED=∠AEC=∠B+∠BAC,所以∠B+∠BAC+∠EDH=90°;联立△ABC中,由三角形内角和定理得到的式子,即可推出∠EDH=(∠C-∠B).
【详解】
解:由三角形的外角性质知:∠HED=∠AEC=∠B+∠BAC,
故∠B+∠BAC+∠EDH=90° ①,
△ABC中,由三角形内角和定理得:
∠B+∠BAC+∠C=180°,
即:∠C+∠B+∠BAC=90° ②,
②-①,得:∠EDH=(∠C-∠B)=×(50°-30°)=10°.
故答案为:10°.
【考点】
本题考查三角形内角和定理、三角形的外角性质以及角平分线的定义等知识,解题的关键是证明∠EFD=(∠C-∠B).
四、解答题
1、(1);(2),理由见解析
【解析】
【分析】
(1)根据题意证明,根据三角形的内角和即可求解;
(2)设AD与CE交于F点,根据题意证明,根据平角的性质即可求解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
(1).理由如下:
,
.
,,
,
,
∴=
∵
∴;
(2).理由如下:
设AD与CE交于F点.
,.
,,
,.
,.
,,
.
【考点】
此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.
2、(1)60°;(2)β-α.
【解析】
【分析】
(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;
(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.
【详解】
解:(1)∵EF∥BC,∠BEF=120°,
∴∠EBC=60°,∠AEF=60°,
又∵BD平分∠EBC,
∴∠EBD=∠BDE=∠DBC=30°,
又∵∠BDA=90°,
∴∠EDA=60°,
∴∠BAD=60°;
(2)如图2,过点A作AG∥BC,
则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,
则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【考点】
考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.
3、见解析.
【解析】
【分析】
首先由已知证明Rt△BAN≌Rt△CAM,得到∠ABN=∠ACM,BN=CM,再根据ASA证明△ABD≌△ACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.
【详解】
证明:在Rt△BAN和Rt△CAM中,,
所以Rt△BAN≌Rt△CAM(HL),
∴∠ABN=∠ACM,BN=CM,
在△ABD和△ACE中,,
∴△ABD≌△ACE(ASA),
∴BD=CE,
∴CE-CM= BD-BN,即EM=DN.
【考点】
本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.
4、(1)见解析;(2)
【解析】
【分析】
(1)由角平分线的性质得DE=DF,再根据HL证明Rt△AED≌Rt△AFD,得AE=AF,从而证明结论;
(2)根据DE=DF,得,代入计算即可.
【详解】
(1)证明:∵AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,
∴DE=DF,
在Rt△AED与Rt△AFD中,
,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵DE=DF,
∴AD垂直平分EF;
(2)解:∵DE=DF,
∴,
∵AB+AC=10,
∴DE=3.
【考点】
本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点.
5、 (1)证明见解析;
(2).
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;
(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出.
(1)
证明:∵,,
∴,
∵AE平分,
∴,
∵,
∴,
∴,
∴,
(2)
解:,
∴,
∵,且,
∴.
【考点】
本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出.
综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解),共23页。
综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解): 这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解),共26页。
综合解析-人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案详解): 这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了下列说法等内容,欢迎下载使用。