综合解析人教版数学八年级上册期中测评试题 A卷(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、如图,中,,D是外一点,, ,则( ).
A.B.C.D.
2、如图,在中,,,平分,则的度数是( )
A.B.C.D.
3、如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=105°,则∠DAC的度数为( )
A.80°B.82°C.84°D.86°
4、下列说法:①若,则为的中点②若,则是的平分线③,则④若,则,其中正确的有( )
A.1个B.2个C.3个D.4个
5、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )
A.30°B.35°C.45°D.60°
二、多选题(5小题,每小题4分,共计20分)
1、如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )
A.∠E=∠FB.EC=BFC.AB=CDD.AB=BC
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、如图, AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法中正确的有( )
A.CE=BF;B.△ABD和△ACD面积相等;C.BF∥CE;D.△BDF≌△CDE
3、如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论中正确的结论是( )
A.AC⊥BDB.CB=CDC.△ABC≌△ADCD.DA=DC
4、如图,在方格中,以为一边作,使之与全等,则在,,,四个点中,符合条件的点有( )
A.B.C.D.
5、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是( )
A.12米B.10米C.15米D.8米
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如图a∥b,∠1+∠2=75°,则∠3+∠4=______________.
2、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.则DE=________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、如图,的度数为__________.
4、如图,是一个中心对称图形,A为对称中心,若,则________,________.
5、已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是__________(写出一个即可),
四、解答题(5小题,每小题8分,共计40分)
1、如图,已知在四边形ABCD中,BD是的平分线,.2 求证:.
2、如图,已知.
(1)请用尺规作图.在内部找一点,使得点到、、的距离相等,(不写作图步骤,保留作图痕迹);
(2)若的周长为,面积为,求点到的距离.
3、如图,已知在中,,AD是BC边上的高,AE是的平分线,求证:.
4、已知:如图,,,.求证:.
5、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-参考答案-
一、单选题
1、D
【解析】
【分析】
设,则,,,由,即可求出.
【详解】
设,则
,
,
,
,
故选:D.
【考点】
本题考查了三角形内角和定理的应用,解题关键是灵活运用相关知识进行求解.
2、C
【解析】
【分析】
在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和定理即可求出的度数.
【详解】
∵在中,,.
∴.
∵平分.
∴.
∴.
故选C.
【考点】
本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键.
3、A
【解析】
【分析】
根据三角形的内角和定理和三角形的外角性质即可解决.
【详解】
解:∵∠BAC=105°,
∴∠2+∠3=75°①
∵∠1=∠2,
∴∠4=∠3=∠1+∠2=2∠2②
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
把②代入①得:3∠2=75°,
∴∠2=25°.
∴∠DAC=105°−25°=80°.
故选A.
【考点】
此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键.
4、A
【解析】
【分析】
根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.
【详解】
当三点不在同一直线上的时候,点C不是AB的中点,故错误;
当OC位于∠AOB的内部时候,此结论成立,故错误;
当为负数时,,故错误;
若,则,故正确;
故选:A.
【考点】
此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.
5、B
【解析】
【分析】
作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.
【详解】
作MN⊥AD于N,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠DAB=180°﹣∠ADC=70°,
∵DM平分∠ADC,MN⊥AD,MC⊥CD,
∴MN=MC,
∵M是BC的中点,
∴MC=MB,
∴MN=MB,又MN⊥AD,MB⊥AB,
∴∠MAB=∠DAB=35°,
故选B.
【考点】
本题考查了平行线的性质,角平分线的性质与判定,熟练掌握相关内容、正确添加辅助线是解题的关键.
二、多选题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、AC
【解析】
【分析】
由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.
【详解】
解:∵AE∥DF,
∴∠A=∠D,
∵AE=DF,
∴要使△EAC≌△FDB,还需要AC=BD或∠E=∠F或∠ACE=∠DBF,
∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,选项A、C符合, B、D不符合.
故选:AC.
【考点】
本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
2、ABCD
【解析】
【分析】
根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.
【详解】
是的中线,
,
又 , ,
,故D选项正确.
∴ , 故A选项正确;
BF∥CE;故C选项正确.
是的中线,
和等底等高,
和面积相等,故B选项正确;
故选:ABCD.
【考点】
本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.
3、ABC
【解析】
【分析】
根据全等三角形的判定以及性质,对选项逐个判定即可.
【详解】
解:∵
∴,,
又∵
∴
∴,A选项正确,符合题意;
在和中
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,C选项正确,符合题意;
∴,B选项正确,符合题意;
根据已知条件得不到,D选项错误,不符合题意;
故选ABC
【考点】
本题考查了全等三角形的判定与性质、等腰三角形的判定与性质以及垂直,根据全等三角形的判定与性质逐一分析四条结论的正误是解题的关键.
4、ACD
【解析】
【分析】
根据全等三角形的对应边相等判断即可.
【详解】
解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,
故选:ACD.
【考点】
此题考查全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.
5、ABD
【解析】
【分析】
根据三角形的三边之间的关系逐一判断即可得到答案.
【详解】
解:中,
<<
<<
符合题意,不符合题意;
故选:
【考点】
本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.
三、填空题
1、105°
【解析】
【分析】
根据平行线的性质和等量代换可以求得∠3+∠4=∠5+∠4,所以根据三角形内角和是180°进行解答即可.
【详解】
如图,
∵a∥b,
∴∠3=∠5,
又∠1+∠2=75°,∠1+∠2+∠4+∠5=180°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠5+∠4=105°,
∴∠3+∠4=∠5+∠4=105°,
故答案是:105°.
【考点】
本题考查了平行线的性质和三角形内角和定理.解题的技巧性在于把求(∠3+∠4)的值转化为求同一三角形内的(∠5+∠4)的值.
2、1
【解析】
【分析】
先证明△ACD≌△CBE,再求出DE的长,解决问题.
【详解】
解:∵BE⊥CE于E,AD⊥CE于D
∴
∵
∴
∵
∴
∴,
∴.
故答案为:1
【考点】
此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键.
3、
【解析】
【分析】
根据多边形的外角和定理即可求解.
【详解】
解:由多边形的外角和定理知,
∠1+∠2+∠3+∠4=360°,
故答案是:360°.
【考点】
本题考查了多边形的外角和定理,理解定理是关键.
4、 30° 2
【解析】
【分析】
根据中心对称图形的性质,得到,再由全等三角形的性质解题即可.
【详解】
解:∵A为对称中心,
∴绕点A旋转能与重合,
∴,
∴,,
∴.
【考点】
本题考查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键.
5、4(答案不唯一,在3<x<9之内皆可)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果.
【详解】
解:根据三角形的三边关系,得:
第三边应大于6-3=3,而小于6+3=9,
故第三边的长度3<x<9.
故答案为:4(答案不唯一,在3<x<9之内皆可).
【考点】
此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可.
四、解答题
1、见解析
【解析】
【分析】
方法一,在BC上截取BE,使,连接DE,由角平分线的定义可得,根据全等三角形的判定可证和全等,再根据全等三角形的性质可得,,由AD=CD等量代换可得,继而可得,由于,可证;
方法2,延长BA到点E,使,由角平分线的定义可得,根据全等三角形的判定可证和全等,继而可得,.由,可得,继而求得,由,继而可得;
方法3, 作于点E,交BA的延长线于点F,由角平分线的定义可得,由,,可得,根据全等三角形的判定可证和全等,继而可得,再根据HL定理可得可证.
【详解】
解:方法1 截长如图,在BC上截取BE,使,
连接DE,
因为BD是的平分线,
所以.
在和中,
因为
所以,
所以,.
因为,
所以,
所以.
因为,
所以.
方法2 补短
如图,延长BA到点E,使.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
因为BD是的平分线,
所以
在和中,
因为,
所以,
所以,.
因为,
所以,
所以.
因为,
所以.
方法3 构造直角三角形全等
作于点E.交BA的延长线于点F
因为BD是的平分线,
所以.
因为,,
所以,
在和中,
因为,
所以,
所以.
在和中,
因为,
所以,
所以.
因为,
所以.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、 (1)见解析
(2)
【解析】
【分析】
(1)根据题意作的角平分线的交点,即为所求;
(2)根据(1)的结论,设点到的距离为,则,解方程求解即可.
(1)
如图,点即为所求,
(2)
设点到的距离为,
由(1)可知点到、、的距离相等
则
解得:
点到的距离为
【考点】
本题考查了作角平分线,角平分线的性质,掌握角平分线的性质是解题的关键.
3、证明见解析.
【解析】
【详解】
试题分析:根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°-∠B,再根据AE平分∠BAC,求得∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,最后根据∠DAE=∠BAE-∠BAD即可求解.
试题解析:∵AD是BC边上的高,
∴∠BAD=90°-∠B.
∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C.
∵∠DAE=∠BAE-∠BAD,
∴∠DAE=(90°-∠B-∠C)-(90°-∠B)=∠B-∠C=(∠B-∠C).
4、见解析
【解析】
【分析】
连接AC,首先根据“HL”判定△ABC△CDA,得到AD=BC,再证△ADO△CBO,则可得到需证的结论.
【详解】
证明:连接AC.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在Rt△ABC和Rt△CDA中,
∴△ABC△CDA.
∴AD=BC.
∵,,
∴∠AD0=∠CB0=90°.
又∵∠AOD=∠COB,
∴△ADO△CBO.
∴.
【考点】
本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
5、不合格,理由见解析
【解析】
【分析】
延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
【详解】
解:如图,延长BD与AC相交于点E.
∵是的一个外角,,,
∴,
同理可得
∵李师傅量得,不是115°,
∴这个零件不合格.
【考点】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解),共23页。
综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解),共25页。
综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解): 这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解),共26页。