综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解)
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为( )
A.6B.7C.8D.9
2、下列说法正确的是( )
A.两个长方形是全等图形B.形状相同的两个三角形全等
C.两个全等图形面积一定相等D.所有的等边三角形都是全等三角形
3、如图,在中,,,,,连接BC,CD,则的度数是( )
A.45°B.50°C.55°D.80°
4、如图,将沿翻折,三个顶点恰好落在点处.若,则的度数为( )
A.B.
C.D.
5、如图,AD是的角平分线,,垂足为F,,和的面积分别为60和35,则的面积为
A.25B.C.D.
二、多选题(5小题,每小题4分,共计20分)
1、如图,已知于点D,现有四个条件:①;②;③;④.那么能得出的条件是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.①③B.②④C.①④D.②③
2、(多选)如图,在Rt△ABC中,∠BAC=90°,∠ACQ=∠BCQ,AD⊥BC,AE=CE,AD与CQ交于点N,BE与CQ交于点M,下面说法正确的是( )
A.S△ABE=S△BCEB.∠AQN=∠ANQC.∠BAD=2∠ACQD.AD•BC=AB•AC
3、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是( )
A.5米B.8.7米C.27米D.18米
4、如图,,,要添加一个条件使.添加的条件可以是( )
A.B.C.D.
5、如图,BE=CF,AB=DE,添加下列哪些条件不能推证△ABC≌△DEF( )
A.BC=EFB.∠C=∠FC.AB∥DED.∠A=∠D
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如果三角形两条边分别为3和5,则周长L的取值范围是________
2、若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是________.(写出一个即可)
3、如图,是的中线,点F在上,延长交于点D.若,则______.
4、若直角三角形的一个锐角为,则另一个锐角等于________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、如图,CA=CB,CD=CE,∠ACB=∠DCE=50°,AD、BE交于点H,连接CH,则∠CHE=_______.
四、解答题(5小题,每小题8分,共计40分)
1、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
2、如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.
3、如图,在等腰三角形ABC中,∠A=90°,AB=AC=6,D是BC边的中点,点E在线段AB上从B向A运动,同时点F在线段AC上从点A向C运动,速度都是1个单位/秒,时间是t秒(0<t<6),连接DE、DF、EF.
(1)请判断△EDF形状,并证明你的结论.
(2)以A、E、D、F四点组成的四边形面积是否发生变化?若不变,求出这个值;若变化,用含t的式子表示.
4、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离.请你用学过的数学知识按以下要求设计一测量方案.
(1)画出测量图案;
(2)写出测量步骤(测量数据用字母表示);
(3)计算AB的距离(写出求解或推理过程,结果用字母表示).
5、在中,,直线经过点C,且于D,于E,
(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);
(2)当直线绕点C旋转到图2的位置时,求证:;
(3)当直线MN绕点C旋转到图3的位置时,试问、、具有怎样的等量关系?请直接写出这个等量关系.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-参考答案-
一、单选题
1、B
【解析】
【分析】
如图,在上截取 连接证明利用全等三角形的性质证明 求解 再证明 从而可得答案.
【详解】
解:如图,在上截取 连接
平分
故选:
【考点】
本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键.
2、C
【解析】
【分析】
性质、大小完全相同的两个图形是全等形,根据定义解答.
【详解】
A、两个长方形的长或宽不一定相等,故不是全等图形;
B、由于大小不一定相同,故形状相同的两个三角形不一定全等;
C、两个全等图形面积一定相等,故正确;
D、所有的等边三角形大小不一定相同,故不一定是全等三角形;
故选:C.
【考点】
此题考查全等图形的概念及性质,熟记概念是解题的关键.
3、B
【解析】
【分析】
连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:连接AC并延长交EF于点M.
,
,
,
,
,
,
,
故选B.
【考点】
本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.
4、D
【解析】
【分析】
根据翻折变换前后对应角不变,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,进而求出∠1+∠2的度数.
【详解】
解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,
∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,
∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,
∴∠1+∠2=360°-180°=180°,
∵∠1=40°,
∴∠2=140°,
故选:D.
【考点】
此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°是解题关键.
5、D
【解析】
【分析】
过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解即可.
【详解】
如图,过点D作于H,
是的角平分线,,
,
在和中,,
≌,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在和中,
≌,
,
和的面积分别为60和35,
,
=12.5,
故选D.
【考点】
本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键.
二、多选题
1、ABC
【解析】
【分析】
根据全等三角形的判定方法,即可求解.
【详解】
解:∵,
∴ ,
A、若,,可用角角边证得,故本选项符合题意;
B、若,,可用角角边证得,故本选项符合题意;
C、若,,可用边角边证得,故本选项符合题意;
D、若,,是角角角,不能证得,故本选项不符合题意;
故选:ABC.
【考点】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、边边边是解题的关键.
2、ABCD
【解析】
【分析】
根据三角形中位线的概念利用等底同高三角形面积相等判断①;结合三角形外角的性质和同角的余角相等判断②;根据同角的余角相等和角平分线的定义判断③;利用三角形的面积公式判断④.
【详解】
解:∵AE=CE,
∴△ABE与△BCE等底同高,
∴S△ABE=S△BCE,故A正确;
在Rt△ABC中,∠BAC=90°,AD⊥BC,
∴∠ABC+∠ACB=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠DAC,∠BAD=∠ACD,
∴∠AQN=∠ABC+∠BCQ,∠ANQ=∠DAC+∠ACQ,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵∠ACQ=∠BCQ,
∴∠AQN=∠ANQ,故B正确;
∠BAD=∠ACD=2∠ACQ,故C正确;
∵,
∴,故D正确,
故选:ABCD.
【考点】
此题考查了三角形中线的性质,角平分线的定义,同角的余角相等等知识,题目难度不大,理解相关的概念正确推理论证是解题的关键.
3、ABD
【解析】
【分析】
连接AB,根据三角形的三边关系定理得出不等式,即可得出选项.
【详解】
解:连接AB,
∵PA=15米,PB=11米,
∴由三角形三边关系定理得:1511<AB<15+11,
4<AB<26,
∴那么,间的距离可能是5米、8.7米、18米;
故选:ABD.
【考点】
本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键.
4、BD
【解析】
【分析】
已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS、ASA或SAS判定两个三角形全等.
【详解】
解:选项A中与不是对应角,不能与已知构成AAS或ASA的判定,无法判定三角形全等,故选项A不合题意;
选项B中是对应角,结合已知可以由AAS判定,故选项B符合题意;
选项C中是对应边,但不是两边及其夹角相等,无法判定,故选项C不合题意;
选项B中由已知可得,是对应角,结合已知可以由ASA判定,故选项D符合题意;
故选BD.
【考点】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:、、、、.注意:、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
5、ABD
【解析】
【分析】
根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵BE=CF,
∴BE+EC=CF+EC,
∴BC=EF,
又∵AB=DE,
∴添加条件BC=EF,根据SS不能判断△ABC≌△DEF,故选项A符合题意;
添加条件∠C=∠F,根据SSA不能判断△ABC≌△DEF,故选项B符合题意;
添加条件AB∥DE,可以得到∠B=∠DEF,根据(SAS)可判断△ABC≌△DEF,故选项C不符合题意;
添加条件∠A=∠D,根据SSA不能判断△ABC≌△DEF,故选项D符合题意;
故选:ABD.
【考点】
本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
三、填空题
1、10
【分析】
根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.
【详解】
设第三边长为x,
∵有两条边分别为3和5,
∴5-3
∴10
此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.
2、5(答案不唯一)
【解析】
【分析】
根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行求解即可.
【详解】
解:由题意知:4﹣3<a<4+3,即1<a<7,
整数a可取2、3、4、5、6中的一个,
故答案为:5(答案不唯一).
【考点】
本题考查三角形的三边关系,能根据三角形的三边关系求出第三边a的取值范围是解答的关键.
3、
【解析】
【分析】
连接ED,由是的中线,得到,,由,得到,设,由面积的等量关系解得,最后根据等高三角形的性质· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得,据此解题即可.
【详解】
解:连接ED
是的中线,
,
设,
与是等高三角形,
,
故答案为:.
【考点】
本题考查三角形的中线、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.
4、75°
【解析】
【分析】
根据三角形内角和定理计算即可.
【详解】
解:∵另一个锐角为15°,
∴另一个锐角为180°-90°-15°=75°,
故答案为:75°.
【考点】
本题考查了直角三角形的性质,解题的关键是掌握直角三角形两锐角互余.
5、65°
【解析】
【分析】
先判断出,再判断出即可得到平分,即可得出结论.
【详解】
解:如图,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
在和中,
;
过点作于,于,
,
,
在和中,
,
,
在与中
,
,
平分;
,
,
,
,
,
,
故答案为:.
【考点】
此题考查了全等三角形的判定与性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
四、解答题
1、不合格,理由见解析
【解析】
【分析】
延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
【详解】
解:如图,延长BD与AC相交于点E.
∵是的一个外角,,,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
同理可得
∵李师傅量得,不是115°,
∴这个零件不合格.
【考点】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
2、见解析
【解析】
【分析】
由得出,由SAS证明,得出对应角相等即可.
【详解】
证明:∵,
∴.
在和中,
∴,
∴.
【考点】
本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.
3、(1)△EDF为等腰直角三角形,证明见解析;(2)四边形AEDF面积不变,9.
【解析】
【分析】
(1)连接AD,利用等腰直角三角形的性质根据SAS证明△BDE≌△ADF,即可得到结论;
(2)根据(1)得到S△BDE=S△ADF,推出S四边形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,根据公式计算即可得到答案.
【详解】
解:(1)△EDF为等腰直角三角形,
理由如下:连接AD,
∵AB=AC,∠BAC=90°,点D是BC中点,
∴AD=BD=CD=BC,AD平分∠BAC,
∴∠B=∠C=∠BAD=∠CAD=45°,
∵点E、F速度都是1个单位秒,时间是t秒,
∴BE=AF,
又∵∠B=∠DAF=45°,AD=BD,
∴△BDE≌△ADF(SAS),
∴DE=DF,∠BDE=∠ADF.
∵∠BDE+∠ADE=90°,
∴∠ADF+∠ADE=90°,
∴∠EDF=90°,
∴△EDF为等腰直角三角形;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)四边形AEDF面积不变,
理由:∵由(1)可知,△BDE≌△ADF,
∴S△BDE=S△ADF,
∴S四边形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,
∴S四边形AEDF=××AC×AB=9.
【考点】
此题考查等腰直角三角形的性质,等腰三角形三线合一的性质,全等三角形的判定及性质.
4、(1)见解析;(2)见解析;(3)设DC=m,则AB= m.
【解析】
【分析】
本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的.
【详解】
解:(1)见图:
(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB= CD.测量DC的长度即为AB的长度;
(3)设DC=m
∵BO=CO,∠AOB=∠COD,AO=DO
∴△AOB≌△COD(SAS)
∴AB=CD=m.
【考点】
本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.
5、(1)见解析;(2)见解析;(3)DE=BE-AD
【解析】
【分析】
(1)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此即可证明△ADC≌△CEB,然后利用全等三角形的性质即可解决问题;
(2)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以证明△ADC≌△CEB,然后利用全等三角形的性质也可以解决问题;
(3)当直线MN绕点C旋转到图(3)的位置时,仍然△ADC≌△CEB,然后利用全等三角形的性质可以得到DE=BE-AD.
【详解】
解:(1)∵△ABC中,∠ACB=90°,
∴∠ACD+∠BCE=90°,
又直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°
∴∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS),
∴CD=BE,CE=AD,
∴DE=CD+CE=AD+BE;
(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
而AC=BC,
∴△ADC≌△CEB,
∴CD=BE,CE=AD,
∴DE=CE-CD=AD-BE;
(3)如图3,
∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
∵AC=BC,
∴△ADC≌△CEB,
∴CD=BE,CE=AD,
∴DE=CD-CE=BE-AD;
DE、AD、BE之间的关系为DE=BE-AD.
【考点】
此题需要考查了全等三角形的判定与性质,也利用了直角三角形的性质,是一个探究性题目,对于学生的能力要求比较高.
综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解),共23页。
综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解),共25页。
综合解析-人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案详解): 这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了下列说法等内容,欢迎下载使用。