|试卷下载
搜索
    上传资料 赚现金
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解)
    立即下载
    加入资料篮
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解)01
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解)02
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解)03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解)

    展开
    这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解),共23页。

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 35分)
    一、单选题(5小题,每小题3分,共计15分)
    1、若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为( )
    A.16B.24C.16或24D.48
    2、如果一个多边形内角和是外角和的4倍,那么这个多边形有( )条对角线.
    A.20B.27C.35D.44
    3、如图,将沿翻折,三个顶点恰好落在点处.若,则的度数为( )
    A.B.
    C.D.
    4、利用边长相等的正三角形和正六边形地板砖镶嵌地面,在每个顶点周围有块正三角形和块正六边形地板砖,则的值为( )
    A.3或4B.4或5C.5或6D.4
    5、如图,一束太阳光线平行照射在放置于地面的正六边形上,若,则的度数为( )
    A.B.C.D.
    二、多选题(5小题,每小题4分,共计20分)
    1、下列作图语句不正确的是( )
    A.作射线AB,使AB=aB.作∠AOB=∠a
    C.延长直线AB到点C,使AC=BCD.以点O为圆心作弧
    2、如图,在方格中,以为一边作,使之与全等,则在,,,四个点中,符合条件的点有( )
    A.B.C.D.
    3、如图,若判断,则需要添加的条件是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.,B.,
    C.,D.,
    4、在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,下面判断中正确的是( )
    A.若添加条件AC=A′C′,则△ABC≌△A′B′C′
    B.若添加条件BC=B′C′,则△ABC≌△A′B′C′
    C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′
    D.若添加条件 ∠C=∠C′,则△ABC≌△A′B′C′
    5、如图,已知于点D,现有四个条件:①;②;③;④.那么能得出的条件是( )
    A.①③B.②④C.①④D.②③
    第Ⅱ卷(非选择题 65分)
    三、填空题(5小题,每小题5分,共计25分)
    1、有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为_____°.
    2、如图,,,若,则线段长为______.

    3、在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.
    4、如图,已知在四边形中,厘米,厘米,厘米,,点为线段的中点.如果点在线段上以3厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为___________厘米/秒时,能够使与以,,三点所构成的三角形全等.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、如图,在中,,,点D在上,将沿直线翻折后,点C落在点E处,联结,如果DE//AB,那么的度数是__________度.
    四、解答题(5小题,每小题8分,共计40分)
    1、如图,已知线段a、b和,用尺规作一个三角形,使.(要求:不写已知、求作、作法、只画图,保留作图痕迹)
    2、如图,在△ABC中,∠ABC=90°,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF.
    (1)求证:△ABE≌△CBF;
    (2)若∠CAE=30°,求∠ACF的度数.
    3、如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.
    4、如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
    (1)求证:△BCE≌△DCF;
    (2)求证:AB+AD=2AE.
    5、在中,,点D是直线BC上一点(点D不与点B,C重合),以AD为一边在AD的右侧作,使,,连接CE.
    (1)如图(1),若点D在线段BC上,和之间有怎样的数量关系?(不必说明理由)
    (2)若,当点D在射线BC上移动时,如图(2),和之间有怎样的数量关系?说明理由.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    解方程得出x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.
    【详解】
    解:如图所示:
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∵x2﹣10x+24=0,
    因式分解得:(x﹣4)(x﹣6)=0,
    解得:x=4或x=6,
    分两种情况:
    ①当AB=AD=4时,4+4=8,不能构成三角形;
    ②当AB=AD=6时,6+6>8,
    ∴菱形ABCD的周长=4AB=24.
    故选:B.
    【考点】
    本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键.
    2、C
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表示成.
    【详解】
    解:设这个多边形是n边形,
    根据题意得,(n-2)•180°=4×360°,
    解得n=10.
    10×(10-3)÷2=35(条).
    故选:C.
    【考点】
    本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.
    3、D
    【解析】
    【分析】
    根据翻折变换前后对应角不变,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,进而求出∠1+∠2的度数.
    【详解】
    解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,
    ∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,
    ∴∠1+∠2=360°-180°=180°,
    ∵∠1=40°,
    ∴∠2=140°,
    故选:D.
    【考点】
    此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°是解题关键.
    4、B
    【解析】
    【分析】
    正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.
    【详解】
    ∵正三边形和正六边形内角分别为60°、120°,
    60°×4+120°=360°,或60°×2+120°×2=360°,
    ∴a=4,b=1或a=2,b=2,
    ①当a=4,b=1时,a+b=5;
    ②当a=2,b=2时,a+b=4.
    故选B.
    【考点】
    解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.
    5、A
    【解析】
    【分析】
    先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.
    【详解】
    解:∵正六边形的每个内角等于120°,每个外角等于60°,
    ∴∠FAD=120°-∠1=101°,∠ADB=60°,
    ∴∠ABD=101°-60°=41°
    ∵光线是平行的,
    ∴=∠ABD=,
    故选A
    【考点】
    本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.
    二、多选题
    1、ACD
    【解析】
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;.
    【详解】
    解:A、射线是不可度量的,故本选项错误;
    B、∠AOB=∠α,故本选项正确;
    C、直线向两方无限延伸没有延长线,故本选项错误;
    D、需要说明半径的长,故选项错误.
    故选:ACD.
    【考点】
    本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质.
    2、ACD
    【解析】
    【分析】
    根据全等三角形的对应边相等判断即可.
    【详解】
    解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,
    故选:ACD.
    【考点】
    此题考查全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.
    3、BC
    【解析】
    【分析】
    已知公共角∠A,根据三角形全等的判定方法对选项依次判定即可;
    【详解】
    解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;
    B. 根据SAS判定△ACD≌△ABE,故本选项正确;
    C. 根据AAS判定△ACD≌△ABE,故本选项正确;
    D. 不能判定△ACD≌△ABE,故本选项错误;
    故选:B、C.
    【考点】
    本题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.
    4、ACD
    【解析】
    【分析】
    已知两个三角形的一组角和角的一组边相等,可添加已知角的另一组边相等,利用SAS判定三角形全等,也可以添加另外两个角中任意一组角相等,利用AAS或ASA判定三角形全等.
    【详解】
    解:A选项,添加条件AC=A′C′,可利用SAS判定则△ABC≌△A′B′C′,选项正确,符合题意;
    B选项,添加条件BC=B′C′,不能判定两个三角形全等,选项不正确;
    C选项,添加条件∠B=∠B′,可利用ASA判定△ABC≌△A′B′C′,选项正确,符合题意;
    D选项,添加条件∠C=∠C′,可利用AAS判定△ABC≌△A′B′C′, 选项正确,符合题意;
    故选ACD
    【考点】
    本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、ABC
    【解析】
    【分析】
    根据全等三角形的判定方法,即可求解.
    【详解】
    解:∵,
    ∴ ,
    A、若,,可用角角边证得,故本选项符合题意;
    B、若,,可用角角边证得,故本选项符合题意;
    C、若,,可用边角边证得,故本选项符合题意;
    D、若,,是角角角,不能证得,故本选项不符合题意;
    故选:ABC.
    【考点】
    本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、边边边是解题的关键.
    三、填空题
    1、105° .
    【解析】
    【分析】
    根据三角形内角和定理结合∠B的度数即可得出∠BDE+∠BED的度数,再根据∠BDE与∠2互补、∠BED与∠1互补,即可求出∠1+∠2的度数,代入∠1=165°即可得出结论.
    【详解】
    ∵∠B=90°,
    ∴∠BDE+∠BED=180°-∠B=90°,
    又∵∠BDE+∠2=180°,∠BED+∠1=180°,
    ∴∠1+∠2=360°-(∠BDE+∠BED)=270°.
    ∵∠1=165°,
    ∴∠2=105°.
    故答案为:105.
    【考点】
    本题考查了三角形内角和定理,根据三角形内角和定理求出∠BDE+∠BED的度数是解题的关键.
    2、8
    【解析】
    【分析】
    过点D作DH⊥AC于H,由等腰三角形的性质可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性质可证DH=CF,由“AAS”可证△DHE≌△FCE,可得EH=EC,即可求解.
    【详解】
    解:如图,过点D作DH⊥AC于H,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    在△DHE和△FCE中,


    故答案为8.
    【考点】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.
    3、16或8
    【解析】
    【分析】
    本题由题意可知有两种情况,AB+AD=15或AB+AD=21.从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16.
    【详解】
    解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x
    又知BD将三角形周长分为15和21两部分
    ∴可知分为两种情况
    ①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16
    ②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8
    经验证,这两种情况都是成立的
    ∴这个三角形的底边长为8或16
    故答案为:16或8
    【考点】
    本题主要考查来了等边三角形的性质以及三角形的三边关系(两边之和大于第三边,两边只差小于第三边),注意求出的结果燕验证三角形的三边关系,掌握分类讨论思想是解题的关键.
    4、3或
    【解析】
    【分析】
    分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.
    【详解】
    解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵∠B=∠C,
    ∴①当BE=CP=6,BP=CQ时,△BPE与△CQP全等,
    此时,6=8﹣3t,
    解得t,
    ∴BP=CQ=2,
    此时,点Q的运动速度为23厘米/秒;
    ②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,
    此时,3t=8﹣3t,
    解得t,
    ∴点Q的运动速度为6厘米/秒;
    故答案为:3或.
    【考点】
    本题考查了全等三角形的性质和判定的应用,解题的关键是掌握全等三角形的对应边相等.
    5、40
    【解析】
    【分析】
    先求出∠BAC,由AB//DE得出∠E=∠BAE,再根据翻折得性质得∠E=∠C,∠CAD=∠EAD,即可求出答案
    【详解】
    ∵∠B=40°,∠C=30°,
    ∴∠BAC=180°-40°-30°=110°,
    根据翻折的性质可知,∠E=∠C,∠CAD=∠EAD,
    ∴∠E=30°,
    ∵AB//DE,
    ∴∠E=∠BAE=30°,
    ∴∠EAC=∠BAC-∠BAE=110°-30°=80°,
    ∴∠CAD=∠EAD=∠EAC=40°,
    故答案为:40
    【考点】
    题目主要考查三角形翻折的性质,平行线的性质,三角形内角和定理等,理解题意,综合运用各个知识点是解题关键.
    四、解答题
    1、见解析
    【解析】
    【分析】
    先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可.
    【详解】
    解:先作,
    再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    所求,如图所示:
    【考点】
    本题考查了复杂作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    2、(1)见解析;(2)∠ACF的度数为60°
    【解析】
    【分析】
    (1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;
    (2)根据题意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,进而可以求出∠ACF的度数.
    【详解】
    (1)证明:∵∠ABC=90°,
    ∴∠ABC=∠CBF=90°.
    在△ABE和△CBF中,

    ∴△ABE≌△CBF(SAS);
    (2)解:∵△ABE≌△CBF,
    ∴∠BAE=∠BCF,
    ∵∠ABC=90°,AB=CB,
    ∴∠BCA=∠BAC=45°,
    ∵∠CAE=30°,
    ∴∠BAE=15°,
    ∴∠BCF=15°,
    ∵∠ACF=∠BCF+∠ACB,
    ∴∠ACF=15°+45°=60°.
    答:∠ACF的度数为60°.
    【考点】
    本题主要考查全等三角形的判定与性质,解此题的关键在于熟练掌握全等三角形的判定方法.
    3、∠DAE=5°,∠BOA=120°
    【解析】
    【分析】
    由∠CAB=50°,∠C=60°可求出∠ABC;由AE、BF是角平分线,得到∠CBF=∠ABF=35°,∠EAF=∠EAB=25°;由AD是高,得到∠DAC;从而计算得到∠DAE和∠BOA.
    【详解】
    ∵∠CAB=50°,∠C=60°
    ∴∠ABC=180°﹣50°﹣60°=70°
    ∵AE、BF是角平分线
    ∴∠CBF=∠ABF=35°,∠EAF=∠EAB=25°
    又∵AD是高
    ∴∠ADC=90°
    ∴∠DAC=180°﹣90°﹣∠C=30°
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠DAE=∠DAC﹣∠EAF=5°
    又∵∠ABF=35°,∠EAB=25°
    ∴∠BOA=180°-∠EAB-∠ABF=180°-25°-35°=120°
    ∴∠DAE=5°,∠BOA=120°.
    【考点】
    本题考查了三角形角平分线、直角三角形的知识;求解的关键是熟练掌握三角形以及直角三角形的性质,从而完成求解.
    4、详见解析
    【解析】
    【分析】
    (1)由角平分线定义可证△BCE≌△DCF(HL);(2)先证Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.
    【详解】
    (1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,
    ∴CE=CF,∠F=∠CEB=90°,
    在Rt△BCE和Rt△DCF中,
    ∴△BCE≌△DCF;
    (2)解:∵CE⊥AB于E,CF⊥AD于F,
    ∴∠F=∠CEA=90°,
    在Rt△FAC和Rt△EAC中,,
    ∴Rt△FAC≌Rt△EAC,
    ∴AF=AE,
    ∵△BCE≌△DCF,
    ∴BE=DF,
    ∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.
    【考点】
    本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.
    5、(1);(2),理由见解析
    【解析】
    【分析】
    (1)根据题意证明,根据三角形的内角和即可求解;
    (2)设AD与CE交于F点,根据题意证明,根据平角的性质即可求解.
    【详解】
    (1).理由如下:


    ,,


    ∴=

    ∴;
    (2).理由如下:
    设AD与CE交于F点.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,.
    ,,
    ,.
    ,.
    ,,

    【考点】
    此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.
    相关试卷

    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解),共25页。

    综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解): 这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解),共26页。

    综合解析-人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案详解): 这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了下列说法等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map