|试卷下载
搜索
    上传资料 赚现金
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案及详解)
    立即下载
    加入资料篮
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案及详解)01
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案及详解)02
    综合解析人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案及详解)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    综合解析人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案及详解)

    展开
    这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅰ)(含答案及详解),共26页。

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 35分)
    一、单选题(5小题,每小题3分,共计15分)
    1、若△ABC中,,则一定是( )
    A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形
    2、如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于( )
    A.148°B.140°C.135°D.128°
    3、如图,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是( )
    A.≌B.≌
    C.≌D.≌
    4、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则∠COF的度数是( )
    A.74°B.76°C.84°D.86°
    5、下列图形中,内角和等于360°的是 ( )
    A.三角形B.四边形C.五边形D.六边形
    二、多选题(5小题,每小题4分,共计20分)
    1、如图,O是直线上一点,A,B分别是,平分线上的点,于点E,于点C,于点D,则下列结论中,正确的是( )
    A.B.
    C.与互余的角有两个D.O是的中点
    2、如图,已知于点D,现有四个条件:①;②;③;④.那么能得出的条件是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.①③B.②④C.①④D.②③
    3、关于多边形,下列说法中正确的是( )
    A.过七边形一个顶点可以作4条对角线B.边数越多,多边形的外角和越大
    C.六边形的内角和等于720°D.多边形的内角中最多有3个锐角
    4、以下列数字为长度的各组线段中,能构成三角形的有( )
    A.1,2,3B.2,3,4C.3,4,5D.4,5,6
    5、在下列正多边形组合中,能铺满地面的是( )
    A.正八边形和正方形B.正五边形和正八边形
    C.正六边形和正三角形D.正三角形和正方形
    第Ⅱ卷(非选择题 65分)
    三、填空题(5小题,每小题5分,共计25分)
    1、如图,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE与AD交于点F,G为△ABC外一点,∠ACD=∠FCG,∠CBG=∠CAF,连接DG.下列结论:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中结论正确的是_____________(只需要填写序号).
    2、如图,在△ABC中,D,E分别是边AB,AC上一点,将△ABC沿DE折叠,使点A的对称点A'落在边BC上,若∠A=50°,则∠1+∠2+∠3+∠4=______.
    3、如图,伸缩晾衣架利用的几何原理是四边形的_______________.
    4、如图,在△ABC中,点D、E分别为边AC、BC上的点,且AD=DE,AB=BE,∠A=70°,则∠CED=______度.
    5、已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是__________(写出一个即可),
    四、解答题(5小题,每小题8分,共计40分)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、在中,,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.
    (1)如图1,当时,则_______°;
    (2)当时,
    ①如图2,连接AD,判断的形状,并证明;
    ②如图3,直线CF与ED交于点F,满足.P为直线CF上一动点.当的值最大时,用等式表示PE,PD与AB之间的数量关系为_______,并证明.
    2、已知,在四边形中,,,分别为四边形的外角,的平分线.

    (1)如图1,若,求的度数;
    (2)如图2,若,交于点,且,,求的度数.
    3、如图,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC.
    求证:BC=AB+CD.

    4、在中,,直线经过点C,且于D,于E,
    (1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);
    (2)当直线绕点C旋转到图2的位置时,求证:;
    (3)当直线MN绕点C旋转到图3的位置时,试问、、具有怎样的等量关系?请直接写出这个等量关系.
    5、已知:如图,,,.求证:.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据三角形内角和180,求出最大角∠C,直接判断即可.
    【详解】
    解:∵∠A:∠B:∠C=1:2:4.
    ∴设∠A=x°,则∠B=2x°,∠C=4x°,
    根据三角形内角和定理得到:x+2x+4x=180,
    解得:x=.
    则∠C=4×= °,则△ABC是钝角三角形.
    故选B.
    【考点】
    本题考查了三角形按角度的分类.
    2、A
    【解析】
    【分析】
    根据已知条件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形内角和可求得∠E,再应用外角和求得∠AFE.
    【详解】
    ∵BD=BC,BE=CA,∠DBE=∠C,
    ∴△ABC≌△EDB(SAS),
    ∴∠A=∠E,
    ∵∠DBE=62°,∠BDE=75°,
    ∴∠E=180°﹣60°﹣75°=43°,
    ∴∠A=43°,
    ∵∠BDE+∠ADE=180°,
    ∴∠ADE=105°,
    ∴∠AFE=∠ADE+∠A=105°+43°=148°.
    故选:A.
    【考点】
    本题考查了全等三角形的判定和性质、三角形外角和、内角和定理,难度不大,但要注意数形结合思想的运用.
    3、B
    【解析】
    【分析】
    观察图形,运用SAS可判定△ABO与△ADO全等.
    【详解】
    解:∵AB=AD,∠BAO=∠DAO,AO是公共边,
    ∴△ABO≌△ADO (SAS).
    故选B.
    【考点】
    本题考查全等三角形的判定,属基础题,比较简单.
    4、C
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【解析】
    【分析】
    利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.
    【详解】
    解:由题意得:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,
    ∴∠BOE=180°﹣72°﹣60°=48°,
    ∴∠COF=360°﹣108°﹣48°﹣120°=84°,
    故选:
    【考点】
    本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识.
    5、B
    【解析】
    【分析】
    根据多边形内角和公式,列式算出它是几边形.
    【详解】
    解:由多边形内角和公式,,解得.
    故选:B.
    【考点】
    本题考查多边形内角和公式,解题的关键是掌握多边形内角和公式.
    二、多选题
    1、ABD
    【解析】
    【分析】
    根据角平分线的性质得,,等量代换得出,故A选项正确;根据角平分线性质得 ,,又因为 即可得,故B选项正确;根据互余的定义和性质可得与 互余的角有4个,故C选项错误;因为OC=OE=OD,所以点O是CD 的中点,故D选项正确;即可得出结果.
    【详解】
    解:∵A,B分别是,的角平分线上的点,
    ∴,,
    ∵,
    ∴,
    故A选项说法正确,符合题意;
    ∵A,B分别是,的角平分线上的点,
    ∴,,
    又∵,
    ∴,
    故B选项说法正确,符合题意;
    ∵,
    ∴与互余,
    ∵,
    ∴,
    ∴与互余,
    ∵,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴,
    ∴与互余,
    ∵,


    ∴,
    ∴与互余,
    综上,与互余的角有4个,
    故C选项说法错误,不符合题意;
    ∵OC=OE=OD,
    ∴点O是CD 的中点,
    故D选项说法正确,符合题意;
    故选ABD.
    【考点】
    本题考查了角平分线的性质,邻补角,余角的性质,线段的中点,解题的关键是掌握角平分线的性质,邻补角,余角的性质,线段的中点.
    2、ABC
    【解析】
    【分析】
    根据全等三角形的判定方法,即可求解.
    【详解】
    解:∵,
    ∴ ,
    A、若,,可用角角边证得,故本选项符合题意;
    B、若,,可用角角边证得,故本选项符合题意;
    C、若,,可用边角边证得,故本选项符合题意;
    D、若,,是角角角,不能证得,故本选项不符合题意;
    故选:ABC.
    【考点】
    本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、边边边是解题的关键.
    3、ACD
    【解析】
    【分析】
    根据多边形的内角和、外角和,多边形的内角线,即可解答.
    【详解】
    解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;
    B、多边形的外角和是固定不变的,选项错误,不符合题意;
    C、六边形的内角和等于720°,选项正确,符合题意;
    D、多边形的内角中最多有3个锐角,选项正确,符合题意;
    故选:ACD
    【考点】
    本题考查了多边形,解决本题的关键是熟记多边形的有关性质.
    4、BCD
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【解析】
    【分析】
    根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可.
    【详解】
    解:A.不能组成三角形,该项不符合题意;
    B.,该项符合题意;
    C.,该项符合题意;
    D.,该项符合题意;
    故选:BCD.
    【考点】
    本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键.
    5、ACD
    【解析】
    【分析】
    正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.
    【详解】
    解:A、正方形的每个内角是90°,正八边形的每个内角是135°,由于90+2×135=360,故能铺满,符合题意;
    B、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满,不合题意;
    C、正六边形和正三角形内角分别为120°、60°,由于60×4+120=360,故能铺满,符合题意;
    D、正三角形、正方形内角分别为60°、90°,由于60×3+90×2=360,故能铺满,符合题意.
    故选:ACD.
    【考点】
    本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
    三、填空题
    1、①②④
    【解析】
    【分析】
    根据条件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF =27°,利用ASA证明△ACF≌△BCG,再根据SAS证明△CDF≌△CDG,据此即可推断各选项的正确性.
    【详解】
    解:在△ABC中,AC=BC,∠ABC=54°,
    ∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,
    ∵AC=BC,CE平分∠ACB,AD平分∠CAB,
    ∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,
    ∵∠ACD=∠FCG=72°,
    ∴∠BCG=∠FCG-36°=36°,
    在△ACF和△BCG中,,
    ∴△ACF≌△BCG(ASA);故①正确;
    ∴∠BGC=∠AFC=180°-36°-27°=117°,故②正确;
    ∴CF=CG,AF=BG,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    在△CDF和△CDG中,,
    ∴△CDF≌△CDG(SAS),
    ∴DF= DG,
    ∴AD=DF+AF=DG+BG,故④正确;
    ∵S△CFD+S△BCG= S△CFD+S△ACF = S△ACD,
    而S△ACE不等于S△ACD,故③不正确;
    综上,正确的是①②④,
    故答案为:①②④.
    【考点】
    本题考查了全等三角形的判定和性质,三角形内角和定理,角平分线的定义,解题的关键是灵活运用所学知识解决问题,
    2、230°
    【解析】
    【分析】
    依据三角形内角和定理,可得△ABC中,∠B+∠C=130°,再根据∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,即可得出∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=230°.
    【详解】
    解:∵∠A=50°,
    ∴△ABC中,∠B+∠C=130°,
    又∵∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,
    ∴∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=360°﹣130°=230°,
    故答案为:230°.
    【考点】
    本题主要考查三角形内角和,熟练掌握三角形内角和及角之间的等量关系是解题的关键.
    3、灵活性.
    【解析】
    【分析】
    根据四边形的灵活性,可得答案.
    【详解】
    我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性,
    故答案为灵活性.
    【考点】
    此题考查多边形,解题关键在于掌握四边形的灵活性.
    4、110
    【解析】
    【分析】
    根据SSS证△ABD≌△EBD,得∠BED=∠A=70°,进而得出∠CED.
    【详解】
    解:∵AD=DE,AB=BE
    又 BD= BD
    ∴△ABD≌△EBD(SSS)
    ∴∠BED=∠A=70°
    ∴∠CED=180°-∠BED=180°-70°=110°
    故本题答案为110.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【考点】
    本题通过考查全等三角形的判定和性质,进而得出结论.
    5、4(答案不唯一,在3<x<9之内皆可)
    【解析】
    【分析】
    根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果.
    【详解】
    解:根据三角形的三边关系,得:
    第三边应大于6-3=3,而小于6+3=9,
    故第三边的长度3<x<9.
    故答案为:4(答案不唯一,在3<x<9之内皆可).
    【考点】
    此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可.
    四、解答题
    1、(1)80;(2)是等边三角形;(3).
    【解析】
    【分析】
    (1)根据垂直平分线性质可知,再结合等腰三角形性质可得,,利用平角定义和四边形内角和定理可得,由此求解即可;
    (2)根据(1)的结论求出即可证明是等边三角形;
    (3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30°直角三角形性质可知即可得出结论.
    【详解】
    解:(1)∵点E为线段AC,CD的垂直平 分线的交点,
    ∴,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵在中,,,
    ∴,
    ∴,
    故答案为:.
    (2)①结论:是等边三角形.
    证明:∵在中,,,
    ∴,
    由(1)得:,,
    ∴是等边三角形.
    ②结论:.
    证明:如解图1,取D点关于直线AF的对称点,连接、;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,
    ∵,等号仅P、E、三点在一条直线上成立,
    如解图2,P、E、三点在一条直线上,
    由(1)得:,
    又∵,
    ∴,
    又∵,,
    ∴,
    ∵点D、点是关于直线AF的对称点,
    ∴,,
    ∴是等边三角形,
    ∴,,
    ∵是等边三角形,
    ∴,,
    ∴,
    ∴,
    在和中,

    ∴(SAS)
    ∴,
    ∵,
    ∴,
    在中,,,
    ∴,

    【考点】
    本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形.
    2、(1);(2).
    【解析】
    【分析】
    (1)如图1,过点C作CH∥DF,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;
    (2)如图2,连接GC并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.
    【详解】
    (1)如图1,过点C作CH∥DF,
    ∵BE∥DF,
    ∴BE∥DF∥CH,
    ∴∠FDC=∠DCH,∠BCH=∠EBC,
    ∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,
    ∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,
    ∴∠FDC=∠CDM,∠EBC=∠CBN,
    ∵∠A+∠BCD=160°,
    ∴∠ADC+∠ABC=360°-160°=200°,
    ∴∠MDC+∠CBN=160°,
    ∴∠FDC+∠CBE=80°,
    ∴∠DCB=80°;
    (2)如图2,连接GC并延长,
    同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,
    ∵BE∥AD,DF∥AB,
    ∴∠A=∠MDF=∠DGB=∠NBG=40°,
    ∵∠A+∠BCD=160°,
    ∴∠BCD=160°-40°=120°.
    【考点】
    本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.
    3、证明见解析
    【解析】
    【分析】
    在BC上截取点E,并使得BE=BA,连接DE,证明△ABD≌△EBD,得到∠DEB=∠BAD=108°,进一步计算出∠DEC=∠CDE=72°得到CD=CE即可证明.
    【详解】
    证明:在线段BC上截取BE=BA,连接DE,如下图所示:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵BD平分∠ABC,∴∠ABD=∠EBD,
    在△ABD和△EBD中: ,
    ∴△ABD≌△EBD(SAS),
    ∴∠DEB=∠BAD=108°,
    ∴∠DEC=180°-108°=72°,又AB=AC,
    ∴∠C=∠ABC=(180°-108°)÷2=36°,
    ∴∠CDE=180°-∠C-∠DEC=180°-36°-72°=72°,
    ∴∠DEC=∠CDE,
    ∴CD=CE,
    ∴BC=BE+CE=AB+CD.
    【考点】
    本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法.
    4、(1)见解析;(2)见解析;(3)DE=BE-AD
    【解析】
    【分析】
    (1)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此即可证明△ADC≌△CEB,然后利用全等三角形的性质即可解决问题;
    (2)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以证明△ADC≌△CEB,然后利用全等三角形的性质也可以解决问题;
    (3)当直线MN绕点C旋转到图(3)的位置时,仍然△ADC≌△CEB,然后利用全等三角形的性质可以得到DE=BE-AD.
    【详解】
    解:(1)∵△ABC中,∠ACB=90°,
    ∴∠ACD+∠BCE=90°,
    又直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
    ∴∠ADC=∠CEB=90°
    ∴∠ACD+∠DAC=90°,
    ∴∠BCE=∠DAC,
    在△ADC和△CEB中,

    ∴△ADC≌△CEB(AAS),
    ∴CD=BE,CE=AD,
    ∴DE=CD+CE=AD+BE;
    (2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
    ∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
    而AC=BC,
    ∴△ADC≌△CEB,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴CD=BE,CE=AD,
    ∴DE=CE-CD=AD-BE;
    (3)如图3,
    ∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
    ∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
    ∴∠ACD=∠CBE,
    ∵AC=BC,
    ∴△ADC≌△CEB,
    ∴CD=BE,CE=AD,
    ∴DE=CD-CE=BE-AD;
    DE、AD、BE之间的关系为DE=BE-AD.
    【考点】
    此题需要考查了全等三角形的判定与性质,也利用了直角三角形的性质,是一个探究性题目,对于学生的能力要求比较高.
    5、见解析
    【解析】
    【分析】
    连接AC,首先根据“HL”判定△ABC△CDA,得到AD=BC,再证△ADO△CBO,则可得到需证的结论.
    【详解】
    证明:连接AC.
    在Rt△ABC和Rt△CDA中,
    ∴△ABC△CDA.
    ∴AD=BC.
    ∵,,
    ∴∠AD0=∠CB0=90°.
    又∵∠AOD=∠COB,
    ∴△ADO△CBO.
    ∴.
    【考点】
    本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
    相关试卷

    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解),共23页。

    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解): 这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解),共25页。

    综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解): 这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解),共26页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map