|试卷下载
搜索
    上传资料 赚现金
    【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)
    立即下载
    加入资料篮
    【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)01
    【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)02
    【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)

    展开
    这是一份【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共31页。试卷主要包含了下列现象等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、春节假期期间某一天早晨的气温是,中午上升了,则中午的气温是( )
    A.B.C.D.
    2、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
    A.15°B.10°C.20°D.25°
    3、如图,菱形OABC的边OA在平面直角坐标系中的x轴上,,,则点C的坐标为( )
    A.B.C.D.
    4、下列现象:
    ①用两个钉子就可以把木条固定在墙上
    ②从A地到B地架设电线,总是尽可能沿着线段AB架设
    ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
    ④把弯曲的公路改直,就能缩短路程
    其中能用“两点之间线段最短”来解释的现象有( )
    A.①④B.①③C.②④D.③④
    5、如图是一个运算程序,若x的值为,则运算结果为( )
    A.B.C.2D.4
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    6、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    7、如图,于点,于点,于点,下列关于高的说法错误的是( )
    A.在中,是边上的高B.在中,是边上的高
    C.在中,是边上的高D.在中,是边上的高
    8、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
    A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
    C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
    9、下面四个立体图形的展开图中,是圆锥展开图的是( ).
    A.B.C.D.
    10、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,过的重心G作分别交边AC、BC于点E、D,联结AD,如果AD平分,,那么______.
    2、如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、在0,1,,四个数中,最小的数是__.
    4、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.
    5、如图,Rt △ABC,∠B=90∘,∠BAC=72°,过C作CF∥AB,联结 AF 与 BC 相交于点 G,若 GF=2AC,则 ∠BAG=_____________°.
    三、解答题(5小题,每小题10分,共计50分)
    1、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
    (1)这两种玻璃保温杯各购进多少个?
    (2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
    2、如图,在平面直角坐标系中,,,.
    (1)在图中作出关于轴的对称图形,并直接写出点的坐标;
    (2)求的面积;
    (3)点与点关于轴对称,若,直接写出点的坐标.
    3、如图,一次函数的图象与反比例函数的图象相交于和两点.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)______,_______;
    (2)结合图象直接写出不等式的解集.
    4、如图1,在平面直角坐标系中,已知、、、,以为边在下方作正方形.
    (1)求直线的解析式;
    (2)点为正方形边上一点,若,求的坐标;
    (3)点为正方形边上一点,为轴上一点,若点绕点按顺时针方向旋转后落在线段上,请直接写出的取值范围.
    5、已知:在△ABC中,AB=AC,直线l过点A .
    (1)如图1,∠BAC=90°,分别过点B,C作直线l的垂线段BD,CE,垂足分别为D,E.
    ①依题意补全图1;
    ②用等式表示线段DE,BD,CE之间的数量关系,并证明;
    (2)如图2,当∠BAC≠90°时,设∠BAC=α(0°< α <180°),作∠CEA=∠BDA=α,点D,E在直线l上,直接用等式表示线段DE,BD,CE之间的数量关系为 .
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据题意可知,中午的气温是,然后计算即可.
    【详解】
    解:由题意可得,
    中午的气温是:°C,
    故选:.
    【点睛】
    本题考查有理数的加法,解答本题的关键是明确有理数加法的计算方法.
    2、A
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
    【详解】
    ∵DE∥AF,
    ∴∠CDE=∠CFA=45°,
    ∵∠CFA=∠B+∠BAF,∠B=30°,
    ∴∠BAF=15°,
    故选A.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
    3、A
    【分析】
    如图:过C作CE⊥OA,垂足为E,然后求得∠OCE=30°,再根据含30°角直角三角形的性质求得OE,最后运用勾股定理求得CE即可解答.
    【详解】
    解:如图:过C作CE⊥OA,垂足为E,
    ∵菱形OABC,
    ∴OC=OA=4
    ∵,
    ∴∠OCE=30°
    ∵OC=4
    ∴OE=2
    ∴CE=
    ∴点C的坐标为.
    故选A.
    【点睛】
    本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE、CE的长度是解答本题的关键.
    4、C
    【分析】
    直接利用直线的性质和线段的性质分别判断得出答案.
    【详解】
    解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
    ②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
    ③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
    ④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
    故选:C.
    【点睛】
    本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、A
    【分析】
    根据运算程序,根据绝对值的性质计算即可得答案.
    【详解】
    ∵<3,
    ∴=,
    故选:A.
    【点睛】
    本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
    6、C
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
    【详解】
    解:
    A、不是中心对称图形,是轴对称图形,故此选项错误;
    B、是中心对称图形,不是轴对称图形,故此选项错误;
    C、是中心对称图形,也是轴对称图形,故此选项正确;
    D、不是中心对称图形,是轴对称图形,故此选项错误;
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、C
    【详解】
    解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
    B、在中,是边上的高,该说法正确,故本选项不符合题意;
    C、在中,不是边上的高,该说法错误,故本选项符合题意;
    D、在中,是边上的高,该说法正确,故本选项不符合题意;
    故选:C
    【点睛】
    本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
    8、D
    【分析】
    两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
    【详解】
    解:∵3600÷20=180米/分,
    ∴两人同行过程中的速度为180米/分,故A选项不符合题意;
    ∵东东在爸爸返回5分钟后返回即第20分钟返回
    ∴m=20-5=15,
    ∴n=180×15=2700,故B选项不符合题意;
    ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
    ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴运动18分钟时两人相距3240-2430=810米;
    ∵返程过程中东东45-20=25分钟走了3600米,
    ∴东东返程速度=3600÷25=144米/分,
    ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
    ∴运动31分钟两人相距756米,故D选项符合题意;
    故选D.
    【点睛】
    本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
    9、B
    【分析】
    由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
    【详解】
    解:选项A是四棱柱的展开图,故A不符合题意;
    选项B是圆锥的展开图,故B符合题意;
    选项C是三棱柱的展开图,故C不符合题意;
    选项D是圆柱的展开图,故D不符合题意;
    故选B
    【点睛】
    本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
    10、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    二、填空题
    1、8
    【解析】
    【分析】
    由重心的性质可以证明,再由AD平分和可得DE=AE,最后根据得到即可求出EC.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    连接CG并延长与AB交于H,
    ∵G是的重心



    ∴,,


    ∵AD平分



    ∴,

    【点睛】
    本题考查三角形的重心的性质、相似三角形的性质与判定、平行线分线段成比例,解题的关键是利用好平行线得到多个结论.
    2、##
    【解析】
    【分析】
    设,则 结合再利用勾股定理建立方程再解方程求解 再利用勾股定理求解梯子的长即可.
    【详解】
    解:设,则 而
    由勾股定理可得:
    整理得:
    解得:

    所以梯子的长度为m.
    故答案为:
    【点睛】
    本题考查的是勾股定理的应用,熟练的利用勾股定理建立方程是解本题的关键.
    3、-2
    【解析】
    【分析】
    由“负数一定小于正数和零”和“两个负数绝对值大的反而小”即可得到答案.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵负数一定小于正数和零,两个负数绝对值大的反而小,
    ∴在0,1,,四个数中,最小的数是,
    故答案为:.
    【点睛】
    本题考查了有理数大小的比较,掌握“两个负数绝对值大的反而小”是解决问题的关键.
    4、3
    【解析】
    【分析】
    根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.
    【详解】
    解:设反比例函数的解析式是,
    设点是反比例函数图象上一点,
    矩形的面积为3,

    即,
    故答案为:3.
    【点睛】
    本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.
    5、24
    【解析】
    【分析】
    取FG的中点E,连接EC,根据直角三角形斜边上的中线等于斜边的一半可得EC=AC,从而可推出∠EAC=∠AEC=∠F+∠ECF=2∠F,已知,∠BAC=72°,则不难求得∠BAG的度数.
    【详解】
    解:如图,取FG的中点E,连接EC.
    ∵FC∥AB,
    ∴∠GCF=90°,
    ∴EC=FG=AC,
    ∴∠EAC=∠AEC=∠F+∠ECF=2∠F,
    设∠BAG=x,则∠F=x,
    ∵∠BAC=72°,
    ∴x+2x=72°,
    ∴x=24°,
    ∴∠BAG=24°,
    故答案为:24.
    【点睛】
    本题考查了直角三角形斜边上的中线,平行线的性质以及角的计算,解题的关键是构造三个等腰三角形.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题
    1、
    (1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    (2)该商店共获利530元
    【分析】
    (1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;
    (2)根据单件利润=售价-进价和总利润=单件利润×销量求解即可.
    (1)
    解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,
    根据题意,得:35x+65(80-x)=3700,
    解得:x=50,
    80-x=80-50=30(个),
    答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    (2)
    解:根据题意,总利润为
    (50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)
    =240+290
    =530(元),
    答:该商店共获利530元.
    【点睛】
    本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.
    2、
    (1)见详解;(−2,1);
    (2)8.5;
    (3)P(5,3)或(−1,−3).
    【分析】
    (1)画出△A1B1C1,据图直接写出C1坐标;
    (2)先求出△ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得△ABC的面积;
    (3)先根据P,Q关于x轴对称,得到Q的坐标,再构建方程求解即可.
    (1)
    解:如图1
    △A1B1C1就是求作的与△ABC关于x轴对称的三角形,点C1的坐标(−2,1);
    (2)
    解:如图2
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    由图知矩形CDEF的面积:5×5=25
    △ADC的面积:×4×5=10
    △ABE的面积:×1×3=
    △CBF的面积:×5×2=5
    所以△ABC的面积为:25-10--5=8.5.
    (3)
    解:∵点P(a,a−2)与点Q关于x轴对称,
    ∴Q(a,2−a),
    ∵PQ=6,
    ∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,
    ∴P(5,3)或(−1,−3).
    【点睛】
    本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.
    3、
    (1),
    (2)或
    【分析】
    (1)把A(-1,m),B(n,-1)分别代入反比例函数解析式可求出m、n;
    (2)确定A点坐标为(-1,2),B点坐标为(2,-1),然后根据图象即可求得.
    (1)
    把A(-1,m),B(n,-1)分别代入得-m=-2,-n=-2,
    解得m=2,n=2,
    故答案为:2,2
    (2)
    ∵m=2,n=2,
    ∴A点坐标为(-1,2),B点坐标为(2,-1),
    根据图象可得,不等式的解集为或.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.
    4、
    (1)
    (2),,,
    (3)或
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    (1)待定系数法求直线解析式,代入坐标、得出,解方程组即可;
    (1)根据OA=2,OB=4,设点P在y轴上,点P坐标为(0,m),根据S△ABP=8,求出点P(0,4)或(0,-12),过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,利用平行线性质求出与AB平行过点P的解析式,与CD,FE的交点,过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,利用平行线性质求出与AB平行过点P的解析式,求出与DE,EF的交点即可;
    (3):根据点N在正方形边上,分四种情况①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,先证△HNM1≌△GM1N′(AAS),求出点N′(6-m,m-6)在线段AB上,代入解析式直线的解析式得出,当点N旋转与点B重合,可得M2N′=NM2-OB=6-4=2②在上,当点N绕点M3旋转与点A重合,先证△HNM3≌△GM3N′(AAS),DH=M3G=6-2=4,HM3=GN′=2,③在上,当点N与点F重合绕点M4旋转到AB上N′先证△M5NM3≌△GM3N′(AAS),得出点N′(-6-m,m+6),点N′在线段AB上,直线的解析式,得出方程,,当点N绕点M5旋转点N′与点A重合,证明△FM3N≌△OM5N′(AAS),可得FM5=M5O=6,FN=ON′=2,④在上,点N绕点M6旋转点N′与点B重合,MN=MB=2即可.
    (1)
    解:设,代入坐标、得:


    ∴直线的解析式;
    (2)
    解:∵、、OA=2,OB=4,设点P在y轴上,点P坐标为(0,m)
    ∵S△ABP=8,
    ∴,
    ∴,
    解得,
    ∴点P(0,4)或(0,-12),
    过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,
    设解析式为,m=2,n=4,
    ∴,
    当y=6时,,
    解得,
    当y=-6时,,
    解得,
    ,,
    过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,
    设解析式为,

    当y=-6, ,
    解得:,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当x=6, ,
    解得,

    ∴,的坐标为或或或,
    (3)
    解:①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,
    ∵M1N=M1N′,∠NM1N′=90°,
    ∴∠HNM1+∠HM1N=90°,∠HM1N+∠GM1N′=90°,
    ∴∠HNM1=∠GM1N′,
    在△HNM1和△GM1N′中,

    ∴△HNM1≌△GM1N′(AAS),
    ∴DH=M1G=6,HM1=GN′=6-m,
    ∵点N′(6-m,m-6)在线段AB上,直线的解析式;
    即,
    解得,
    当点N旋转与点B重合,
    ∴M2N′=NM2-OB=6-4=2,
    ,,

    ②在上,
    当点N绕点M3旋转与点A重合,
    ∵M3N=M3N′,∠NM3N′=90°,
    ∴∠HNM3+∠HM3N=90°,∠HM3N+∠GM3N′=90°,
    ∴∠HNM3=∠GM3N′,
    在△HNM3和△GM3N′中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴△HNM3≌△GM3N′(AAS),
    ∴DH=M3G=6-2=4,HM3=GN′=2,
    ,,
    ③在上,
    当点N与点F重合绕点M4旋转到AB上N′,
    ∵M4N=M4N′,∠NM4N′=90°,
    ∴∠M5NM4+∠M5M4N=90°,∠M5M4N+∠GM4N′=90°,
    ∴∠M5NM4=∠GM4N′,
    在△M5NM4和△GM4N′中,

    ∴△M5NM3≌△GM3N′(AAS),
    ∴FM5=M4G=6,M5M4=GN′=-6-m,
    ∴点N′(-6-m,m+6),
    点N′在线段AB上,直线的解析式;

    解得,
    当点N绕点M5旋转点N′与点A重合,
    ∵M5N=M5N′,∠NM5N′=90°,
    ∴∠NM5O+∠FM5N=90°,∠OM5N+∠OM5N′=90°,
    ∴∠FM5N=∠OM5N′,
    在△FM5N和△OM5N′中,

    ∴△FM3N≌△OM5N′(AAS),
    ∴FM5=M5O=6,FN=ON′=2,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,,,
    ④在上,
    点N绕点M6旋转点N′与点B重合,MN=MB=2,
    ,,,
    综上:或
    【点睛】
    本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力.
    5、
    (1)①见详解;②结论为DE=BD+CE,证明见详解;
    (2)DE=BD+CE.证明见详解.
    【分析】
    (1)①依题意在图1作出CE、BD ,标出直角符号,垂足即可;
    ②结论为DE=BD+CE,先证∠ECA=∠BAD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD,即可;
    (2)DE=BD+CE.根据∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,得出∠CAE=∠ABD,再证△ECA≌△DAB(AAS),得出EA=BD,CE=AD即可.
    (1)
    解:①依题意补全图1如图;
    ②结论为DE=BD+CE,
    证明:∵CE⊥l,BD⊥l,
    ∴∠CEA=∠BDA=90°,
    ∴∠ECA+∠CAE=90°,
    ∵∠BAC=90°,
    ∴∠CAE+∠BAD=90°
    ∴∠ECA=∠BAD,
    在△ECA和△DAB中,

    ∴△ECA≌△DAB(AAS),
    ∴EA=BD,CE=AD,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴ED=EA+AD=BD+CE;
    (2)
    DE=BD+CE.
    证明:∵∠BAC=α(0°< α <180°)=∠CEA=∠BDA=α,
    ∴∠CAE+∠BAD=180°-α,∠BAD+∠ABD=180°-α,
    ∴∠CAE=∠ABD,
    在△ECA和△DAB中,

    ∴△ECA≌△DAB(AAS),
    ∴EA=BD,CE=AD,
    ∴ED=EA+AD=BD+CE;
    故答案为:ED= BD+CE.
    【点睛】
    本题考查一线三等角,三角形内角和,平角,三角形全等判定与性质,掌握一线三等角特征,三角形内角和,平角,三角形全等判定方法与性质是解题关键.
    价格\类型
    A型
    B型
    进价(元/个)
    35
    65
    标价(元/个)
    50
    100
    相关试卷

    【历年真题】贵州省兴仁市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解): 这是一份【历年真题】贵州省兴仁市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共24页。试卷主要包含了如图,等内容,欢迎下载使用。

    【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了使分式有意义的x的取值范围是,某玩具店用6000元购进甲,如图,在数轴上有三个点A等内容,欢迎下载使用。

    【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解): 这是一份【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共26页。试卷主要包含了下列说法正确的是.,使分式有意义的x的取值范围是,计算3.14-的结果为 .等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【历年真题】湖南省娄底市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map