![【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)01](http://img-preview.51jiaoxi.com/2/3/12676367/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)02](http://img-preview.51jiaoxi.com/2/3/12676367/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)03](http://img-preview.51jiaoxi.com/2/3/12676367/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)
展开2022年中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、多项式去括号,得( )
A. B. C. D.
2、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )
A.个 B.个 C.个 D.个
3、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1 B. C. D.
4、下列命题中,真命题是( )
A.同位角相等
B.有两条边对应相等的等腰三角形全等
C.互余的两个角都是锐角
D.相等的角是对顶角.
5、 “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:
视力 | 4.3 | 4.4 | 4.5 | 4.6 | 4.7 | 4.8 | 4.9 | 5.0 |
人数 | 2 | 3 | 6 | 9 | 12 | 10 | 5 | 3 |
则视力的众数是( )
A.4.5 B.4.6 C.4.7 D.4.8
6、下列四个实数中,无理数是( )
A. B.0.131313… C. D.
7、下列命题中,是真命题的是( )
A.一条线段上只有一个黄金分割点
B.各角分别相等,各边成比例的两个多边形相似
C.两条直线被一组平行线所截,所得的线段成比例
D.若2x=3y,则
8、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.
小张:该工艺品的进价是每个22元;
小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.
经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?
设这种工艺品的销售价每个应降低x元,由题意可列方程为( )
A.(38﹣x)(160+×120)=3640
B.(38﹣x﹣22)(160+120x)=3640
C.(38﹣x﹣22)(160+3x×120)=3640
D.(38﹣x﹣22)(160+×120)=3640
9、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )
A.5 B.8 C.11 D.9
10、如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果有理数满足,在数轴上点所表示的数是,点所表示的数是;那么在数轴上_______(填点和点中哪个点在哪个点)的右边.
2、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有 _____个.
3、如图,东方明珠塔是上海的地标建筑之一,它的总高度是468米,塔身自下而上共有3个球体,其中第2个球体的位置恰好是总高度的黄金分割点,且它到地面的距离大于到塔顶的距离,则第2个球体到地面的距离是米_________.(结果保留根号).
4、观察下列图形排列规律(其中△是三角形,□是正方形,〇是圆),□〇△□□〇△□〇△□□〇△□……,若第一个图形是正方形,则第2022个图形是________(填图形名称).
5、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____.
三、解答题(5小题,每小题10分,共计50分)
1、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为[A,B]的“三倍距点”,当CB=3CA时,我们称C为[B,A]的“三倍距点”.点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b−5|=0.
(1) a=__________,b=__________;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C所表示的数为______;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒.当点B为M,N两点的“三倍距点”时,求t的值.
2、已知:如图,E,F是线段BC上两点,ABCD,BE=CF,∠A=∠D.求证:AF=DE.
3、 “疫情未结束,防疫绝不放松”.为了了解同学们掌握防疫知识的情况,增强防疫意识,某校开展了“全民行动•共同抗疫”的自我防护知识网上答题竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:
七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82
八年级10名学生的竞赛成绩在C组中的数据是94,90,94
七、八年级抽取的学生竞赛成绩统计表
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | 92 | 90 | c | 52 |
八年级 | 92 | b | 100 | 50.4 |
八年抽取的学生竞赛成绩扇形统计图
根据以上信息,解答下列问题:
(1)上述图表中a= ,b= ,c= ;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握自我防护知较好?请说明理由(一条理由即可);
(3)该校七、八年级共640人参加了此次网上答题竞赛活动,估计参加竞赛活动成绩优秀(x≥90)的学生人数是多少?
4、计算:
(1)(2a﹣b)2﹣b(2a+b);
(2)(﹣a﹣1)÷.
5、二次函数的图象与y轴交于点A,将点A向右平移4个单位长度,得到点B,点B在二次函数的图象上.
(1)求点B的坐标(用含的代数式表示);
(2)二次函数的对称轴是直线 ;
(3)已知点(,),(,),(,)在二次函数的图象上.若,比较,,的大小,并说明理由.
-参考答案-
一、单选题
1、D
【分析】
利用去括号法则变形即可得到结果.
【详解】
解:−2(x−2)=-2x+4,
故选:D.
【点睛】
本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.
2、A
【分析】
过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.
【详解】
解:过点A作AD⊥BC与D,
∵BD=4,,
∴AD=BD,
∵,
∴,
∴BC=7,
∴DC=BC-BD=7-4=3,
∴①主视图中正确;
∴左视图矩形的面积为3×6=,
∴②正确;
∴tanC,
∴③正确;
其中正确的个数为为3个.
故选择A.
【点睛】
本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.
3、C
【分析】
证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
【详解】
解:四边形是正方形,
,,,
,
,
,
,
,
,
,
,
,
是等腰直角三角形,
,
故选:C.
【点睛】
本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
4、C
【分析】
根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.
【详解】
解:A、两直线平行,同位角相等,故本选项说法是假命题;
B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;
C、互余的两个角都是锐角,本选项说法是真命题;
D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;
故选:C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5、C
【分析】
出现次数最多的数据是样本的众数,根据定义解答.
【详解】
解:∵4.7出现的次数最多,∴视力的众数是4.7,
故选:C.
【点睛】
此题考查了众数的定义,熟记定义是解题的关键.
6、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.
【详解】
解:A.,是整数,属于有理数,故本选项不合题意;
B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;
C.是分数,属于有理数,故本选项不合题意;
D.是无理数,故本选项符合题意;
故选:D.
【点睛】
题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.
7、B
【分析】
根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.
【详解】
解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;
B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;
C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;
D.若2x=3y,则,所以D选项不符合题意.
故选:B.
【点睛】
本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
8、D
【分析】
由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.
【详解】
解:∵这种工艺品的销售价每个降低x元,
∴每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个.
依题意得:(38-x-22)(160+×120)=3640.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
9、C
【分析】
分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.
【详解】
解:解不等式x-a≥1,得:x≥a+1,
解不等式x+5≤b,得:x≤b-5,
∵不等式组的解集为3≤x≤4,
∴a+1=3,b-5=4,
∴a=2,b=9,
则a+b=2+9=11,
故选:C.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
10、B
【分析】
取的中点,连接,交于点,则,,由,得,由,得,,则,,从而解决问题.
【详解】
解:矩形中,点,点分别是,的中点,
,,,
取的中点,连接,交于点,如图,
则是的中位线,
,,
,,
,
,
,
,
,
,,
,,
,,
,
,
故选:B.
【点睛】
本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出和的长是解题的关键.
二、填空题
1、点在点
【分析】
利用a61<0可知a<0,于是可得a622>0,a2021<0,根据原点左边的数为负数,原点右边的数为正数可得结论.
【详解】
解:,
.
,,
点在点的右边.
故答案为:点在点.
【点睛】
本题主要考查了有理数的乘方,数轴.利用负数的偶次方是正数,负数的奇数次方是负数的法则是解题的关键.
2、3
【分析】
先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可.
【详解】
解:由题意可得:
参与该游戏可免费得到吉祥物的频率为=,
设纸箱中红球的数量为x个,
则,
解得:x=3,
所以估计纸箱中红球的数量约为3个,
故答案为:3.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
3、
【分析】
根据黄金分割点的概念,结合图形可知第2个球体到塔底部的距离是较长线段,进一步计算出长度.
【详解】
解:设第2个球体到塔底部的距离为,
根据题意得:,
解得:,
第2个球体到塔底部的距离为米.
故答案为:.
【点睛】
本题考查了黄金分割的概念,解题的关键是掌握如果线段上一点把线段分割为两条线段,,当,即时,则称点是线段的黄金分割点.
4、圆
【分析】
三角形、正方形、圆的排列规律是七个为一循环.用2022除以7,商为组数,如果不能整除,再根据余数即可判定第2022个图形是什么图形.
【详解】
解:2022÷7=288(组)……6(个)
第2022个图形是第289组的第6个图形,是圆.
故答案为:圆.
【点睛】
解答此题的关键是找出这些图形的排列规律,几个图形为一循环(组).
5、-3
【分析】
求解的值,然后代入求解即可.
【详解】
解:由题意知
解得
∴
故答案为:.
【点睛】
本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.
三、解答题
1、
(1)-3,5
(2)3
(3)当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【分析】
(1)根据非负数的性质,即可求得a,b的值;
(2)根据“三倍距点”的定义即可求解;
(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可求解.
(1)
解:∵(a+3)2+|b−5|=0,
∴a+3=0,b−5=0,
∴a=-3,b=5,
故答案为:-3,5;
(2)
解:∵点A所表示的数为-3,点B所表示的数为5,
∴AB=5-(-3)=8,
∵点C为[A,B]的“三倍距点”,点C在线段AB上,
∴CA=3CB,且CA+CB=AB=8,
∴CB=2,
∴点C所表示的数为5-2=3,
故答案为:3;
(3)
解:根据题意知:点M所表示的数为3t-3,点N所表示的数为t+5,
∴BM=,BN=,(t>0),
当点B为[M,N]的“三倍距点”时,即BM=3BN,
∴,
∴或,
解得:,
而方程,无解;
当点B为[N,M]的“三倍距点” 时,即3BM=BN,
∴,
∴或,
解得:或t=3;
综上,当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【点睛】
本题考查了非负数的性质,一元一次方程的应用、数轴以及绝对值,熟练掌握“三倍距点”的定义是解题的关键.
2、见解析
【分析】
欲证明AF=DE,只要证明△ABF≌△DCE即可;
【详解】
证明:∵BE=CF,
∴BF=CE,
∵ABCD,
∴∠B=∠C,
在△ABF和△DCE,,
∴△ABF≌△DCE,
∴AF=DE.
【点睛】
本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
3、
(1)a=40,b=94,c=90和96
(2)八年级,理由见解析
(3)416人
【分析】
(1)根据频率=频数÷总数,中位数、众数的计算方法进行计算即可;
(2)比较方差的大小得出答案;
(3)求出七、八年级优秀人数所占的百分比即可.
【小题1】
解:八年级10名学生的竞赛成绩在C组中的数据是:94,94,90,
∴C组所占的百分比为3÷10×100%=30%,
∵1-10%-20%-30%=40%,
即a=40,
八年级A组的有2人,B组的有1人,C组有3人,D组的有4人,将这10人的成绩从小到大排列,处在中间位置的两个数都是94,因此中位数是94,即b=94,
七年级10名学生成绩出现次数最多的是90和96,因此众数是90和96,即c=90和96,
故答案为:40,94,90和96;
【小题2】
八年级学生掌握自我防护知较好,理由:
∵七年级的方差为52,八年级的方差是50.4,而52>50.4,
∴八年级学生的成绩较为稳定,
∴八年级学生掌握自我防护知较好;
【小题3】
640×=416(人),
答:参加竞赛活动成绩优秀(x≥90)的学生人数是416人.
【点睛】
本题考查中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数以及方差的计算方法是正确解答的关键.
4、
(1)4a2-6ab
(2)
【分析】
(1)先利用完全平方公式和单项式乘多项式的运算法则计算乘方和乘法,然后再算加减;
(2)先将小括号内的式子进行通分计算,然后再算括号外面的.
【小题1】
解:原式=4a2-4ab+b2-2ab-b2
=4a2-6ab;
【小题2】
原式=
=
=
【点睛】
本题考查整式的混合运算,分式的混合运算,掌握完全平方公式的结构及通分和约分的技巧是解题关键.
5、(1)B(4,);(2);(3),见解析
【分析】
(1)根据题意,令,即可求得的坐标,根据平移的性质即可求得点的坐标;
(2)根据题意关于对称轴对称,进而根据的坐标即可求得对称轴;
(3)根据(2)可知对称轴为,进而计算点与对称轴的距离,根据抛物线开口朝下,则点离对称轴越远则函数值越小,据此求解即可
【详解】
解:(1)∵令,
∴,
∴点A的坐标为(0,),
∵将点A向右平移4个单位长度,得到点B,
∴点B的坐标为(4,).
(2) A的坐标为(0,),点B的坐标为(4,)
点都在在二次函数的图象上.即关于对称轴对称
对称轴为
(3)∵对称轴是直线,,
∴点(,),(,)在对称轴的左侧,
点(,)在对称轴的右侧,
∵,
∴,
∴,
,
∵,
∴.
【点睛】
本题考查了平移的性质,二次函数的对称性,二次函数的性质,熟练掌握二次函数的性质是解题的关键.
【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解): 这是一份【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共26页。试卷主要包含了下列说法正确的是.,使分式有意义的x的取值范围是,计算3.14-的结果为 .等内容,欢迎下载使用。
【历年真题】2022年河北保定中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【历年真题】2022年河北保定中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共26页。试卷主要包含了方程的解为,如图,在数轴上有三个点A,下列运算中,正确的是,已知,,,则等内容,欢迎下载使用。