![【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)01](http://img-preview.51jiaoxi.com/2/3/12679740/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)02](http://img-preview.51jiaoxi.com/2/3/12679740/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)03](http://img-preview.51jiaoxi.com/2/3/12679740/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)
展开2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题与它的逆命题都为真命题的是( )
A.已知非零实数x,如果为分式,那么它的倒数也是分式.
B.如果x的相反数为7,那么x为-7.
C.如果一个数能被8整除,那么这个数也能被4整除.
D.如果两个数的和是偶数,那么它们都是偶数.
2、无论a取什么值时,下列分式总有意义的是( )
A. B. C. D.
3、下列计算:① 0﹣(﹣5)=0+(﹣5)=﹣5; ② 5﹣3×4=5﹣12=﹣7;③ 4÷3×(﹣)=4÷(﹣1)=﹣4; ④ ﹣12﹣2×(﹣1)2=1+2=3.其中错误的有( )
A.1个 B.2个 C.3个 D.4个
4、直线,,按照如图所示的方式摆放,与相交于点,将直线绕点按照逆时针方向旋转 ()后,,则的值为( )
A. B. C. D.
5、使分式有意义的x的取值范围是( )
A. B. C. D.
6、下列等式成立的是( )
A. B.
C. D.
7、有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种 B.2种 C.3种 D.4种
8、如果,那么的取值范围是( )
A. B. C. D.
9、已知空气的单位体积质量为克/厘米3,将用小数表示为( )
A. B. C. D.
10、计算的值为( )
A. B. C.82 D.178
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则= .
2、若不等式组的解集是-1<x<1,则(a+b)2019=________.
3、一元二次方程的根是 .
4、已知,那么它的余角是________,它的补角是________.
5、已知点O在直线AB上,且线段OA=4 cm,线段OB=6 cm,点E,F分别是OA,OB的中点,则线段EF=________cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点B(3,1)、C(﹣2,6),与y轴交于点A,对称轴为直线x=1.
(1)求抛物线的表达式;
(2)求△ABM的面积;
(3)点P是抛物线上一点,且∠PMB=∠ABM,试直接写出点P的坐标.
2、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).
(1)求二次函数的表达式;
(2)连接AC,BC,判定△ABC的形状,并说明理由.
3、解方程:
4、平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价2元,平均每周可多售出40顶.
(1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?
(2)商店降价销售后,决定每销售1顶头盔就向某慈善机构捐赠m元(m为整数,且),帮助做“交通安全”宣传.捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m的值.
5、已知抛物线.
(1)求证:对任意实数m,抛物线与x轴总有交点.
(2)若该抛物线与x轴交于,求m的值.
-参考答案-
一、单选题
1、B
【分析】
先判断原命题的真假,然后分别写出各命题的逆命题,再判断逆命题的真假.
【详解】
解:A. 的倒数是,不是分式,原命题是假命题,不符合题意;
B. 如果x的相反数为7,那么x为-7是真命题,逆命题为:如果x为-7,那么x的相反数为7,是真命题,符合题意;
C. 如果一个数能被8整除,那么这个数也能被4整除是真命题,逆命题为:如果一个数能被4整除,那么这个数也能被8整除,是假命题,不符合题意;
D.因为两个奇数的和也是偶数,所以原命题是假命题,不符合题意;
故选B.
【点睛】
本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
2、D
【分析】
根据分式有意义的条件是分母不等于零进行分析即可.
【详解】
解:A、当a=0时,分式无意义,故此选项错误;
B、当a=−1时,分式无意义,故此选项错误;
C、当a=−1时,分式无意义,故此选项错误;
D、无论a为何值,分式都有意义,故此选项正确;
故选D.
【点睛】
此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
3、C
【分析】
根据有理数的减法法则可判断①;先算乘法、再算减法,可判断②;根据有理数的乘除运算法则可判断③;根据有理数的混合运算法则可判断④,进而可得答案.
【详解】
解:,所以①运算错误;
,所以②运算正确;
4÷3×(﹣)=4××(﹣)=﹣,所以③运算错误;
﹣12﹣2×(﹣1)2=-1-2×1=-3,所以④运算错误.
综上,运算错误的共有3个,故选:C.
【点睛】
本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.
4、C
【分析】
先求出∠O的度数,再根据垂直的定义即可得到旋转的度数.
【详解】
解:根据三角形外角的性质可得∠O=140°-80°=60°,
已知将直线绕点按照逆时针方向旋转 ()后,,
故n=90°-60°
=30°.
故选C.
【点睛】
本题考查三角形的相关知识,掌握三角形内角和定理和三角形外角的性质是解题关键.
5、B
【分析】
根据分式有意义的条件,即分母不为零求出x的取值范围即可.
【详解】
解:由题意得:,
解得,
故选:B.
【点睛】
本题主要考查了分式有意义的条件,熟知分式有意义,即分母不为零是解题的关键.
6、D
【分析】
根据分式的基本性质进行判断.
【详解】
解:A、分子、分母同时除以-1,则原式=,故本选项错误;
B、分子、分母同时乘以-1,则原式=,故本选项错误;
C、分子、分母同时除以a,则原式= ,故本选项错误;
D、分子、分母同时乘以b,则原式=,故本选项正确.
故选D.
【点睛】
本题考查了分式的基本性质.特别要注意:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.
7、B
【分析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
8、C
【分析】
根据绝对值的性质,得出,即可得解.
【详解】
由题意,得
解得
故选:C.
【点睛】
此题主要考查绝对值的性质,熟练掌握,即可解题.
9、B
【分析】
指数是-3,说明数字1前面有3个0
【详解】
指数是-3,说明数字1前面有3个0,
故选B
【点睛】
在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)
10、D
【分析】
根据有理数的混合运算计算即可;
【详解】
解:.
故选D.
【点睛】
本题主要考查了含有乘方的有理数混合运算,准确计算是解题的关键.
二、填空题
1、.
【解析】
试题解析:设,则x=2k,y=3k,z=4k,则
=.
考点:分式的基本性质.
2、-1
【解析】
【分析】
解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后代入即可得到最终答案.
【详解】
解不等式x﹣a>2,得:x>a+2,解不等式b﹣2x>0,得:x.
∵不等式的解集是﹣1<x<1,∴a+2=﹣1,1,解得:a=﹣3,b=2,则(a+b)2019=(﹣3+2)2019=﹣1.
故答案为:﹣1.
【点睛】
本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.
3、
【详解】
解:用因式分解法解此方程
,
,
,
即.
故答案为:.
【点睛】
本题考查解一元二次方程.掌握解一元二次方程的方法,选择适合的方法可以简便运算
4、
【分析】
根据余角、补角的性质即可求解.
【详解】
解:,
故答案为,.
【点睛】
此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键.
5、1或5
【分析】
根据题意,画出图形,此题分两种情况;
①点O在点A和点B之间(如图①),则;②点O在点A和点B外(如图②),则.
【详解】
如图,(1)点O在点A和点B之间,如图①,
则.
(2)点O在点A和点B外,如图②,
则.
∴线段EF的长度为1cm或5cm.
故答案为1cm或5cm.
【点睛】
此题考查两点间的距离,解题关键在于利用中点性质转化线段之间的倍分关系.
三、解答题
1、
(1)y=x2-2x-2
(2)3
(3)(8,46)或(2,-2)
【分析】
(1)由题意设抛物线解析式为y=ax2+bx+c,依题意得出三元一次方程组,解方程得出a、b、c的值,即可求出抛物线的解析式;
(2)根据题意连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,求出直线AB的解析式,求出点Q的坐标,得出MQ的长,再利用S△ABM=S△MQA+S△MQB,即可求出△ABM的面积;
(3)根据题意分PM在AB的左侧和右侧两种情况进行讨论,即可得出点P的坐标.
(1)
解:(1)设抛物线解析式为y=ax2+bx+c,
∵抛物线经过点B(3,1)、C(-2,6),对称轴为直线x=1,
∴,
解得:,
∴设抛物线解析式为:y=x2-2x-2.
(2)
如图1,连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,
当x=0时,y=-2,当x=1时,y=-3,
∴A(0,-2),M(1,-3),
设直线AB的解析式为y=mx+n,
把A(0,-2),B(3,1)代入得:,
解得:,
∴y=x-2,
当x=1时,y=-1,
∴Q(1,-1),
∴MQ=-1-(-3)=2,
∴S△ABM=S△MQA+S△MQB
=•MQ•|xB-xA|
=×2×|3-0|
=3.
(3)
如图2,分两种情况分类讨论:
①当PM在AB的左侧时,PM交AB于点D,设D(t,t-2),
∵B(3,1)、M(1,-3),
∴,
∵∠PMB=∠ABM,
∴BD=MD,
∴,
解得:t=,
∴D(,),
设直线MD的解析式为y=kx+b,
∴,
解得:,
∴直线MD的解析式为y=7x-10,
∴,
解得: (舍去),,
∴P(8,46),
②当PM在AB的右侧时,PM交抛物线于点P,
∵∠PMB=∠ABM,
∴AB∥PM,
∴设直线MP的解析式为y=x+d,
把M(1,-3)代入得:-3=1+d,
∴d=-4,
∴直线MP的解析式为y=x-4,
∴,
解得: (舍去),,
∴P(2,-2),
综上所述,点P的坐标为(8,46)或(2,-2).
【点睛】
本题考查二次函数综合题,熟练掌握并利用待定系数法和分类讨论的思想进行分析是解决问题的关键.
2、
(1);
(2)直角三角形,理由见解析.
【分析】
(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;
(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.
(1)
解:将点C代入函数解析式得:,
解得:,
故该二次函数表达式为:.
(2)
解:令,得:,
解得:,.
∴A点坐标为(-1,0),B点坐标为(3,0).
∴OA=1,OC=,,
∴,
.
∵,即,
∴的形状为直角三角形.
【点睛】
本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.
3、
【分析】
解一元一次方程,先去分母、去括号,然后移项合并同类项,最后系数化为1即可.
【详解】
解:去分母:
去括号:
移项:
合并同类项:
系数化为1:
∴是原方程的解.
【点睛】
本题考查了解一元一次方程.解题的关键在于去分母,去括号.
4、
(1)降价20元
(2)或4或5
【分析】
(1)设每顶头盔应降价x元,根据题意列出方程求解即可;
(2)设每周扣除捐赠后可获得利润为w元,每顶头盔售价a元,根据题意列出函数求解即可;
(1)
解:设每顶头盔应降价x元.
根据题意,得.
解得.
当时,;
当时,;
每顶售价不高于58元,
∴每顶头盔应降价20元.
(2)
设每周扣除捐赠后可获得利润为w元,每顶头盔售价a元,根据题意,得
抛物线对称轴为直线,开口向下,
当时,利润仍随售价的增大而增大,
,解得.
,
为整数,
或4或5.
【点睛】
本题主要考查了二次函数的应用,结合一元二次方程的求解是解题的关键.
5、
(1)见解析
(2)
【分析】
(1)令,得到关于的一元二次方程,根据一元二次方程根的判别式判断即可;
(2)令,,解一元二次方程即可求得的值
(1)
令,则有
即,对于任意实数方程总有两个实数根,
对任意实数m,抛物线与x轴总有交点.
(2)
解:∵抛物线与x轴交于,
∴
解得
【点睛】
本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键.
【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了使分式有意义的x的取值范围是,某玩具店用6000元购进甲,如图,在数轴上有三个点A等内容,欢迎下载使用。
【历年真题】2022年河北省新乐市中考数学模拟测评 卷(Ⅰ)(含详解): 这是一份【历年真题】2022年河北省新乐市中考数学模拟测评 卷(Ⅰ)(含详解),共25页。试卷主要包含了已知+=0,则a-b的值是 .,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。