【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及解析)
展开2022年中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)b﹣a<0;(2)|a|<|b|;(3)a+b>0;(4)>0.其中正确的是( )
A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)
2、已知空气的单位体积质量为克/厘米3,将用小数表示为( )
A. B. C. D.
3、如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是( )
A.
B.
C.
D.
4、已知a<b,则下列不等式中不正确的是( )
A.2+a<2+b B.a-5<b-5 C.-2a<-2b D.<
5、直线,,按照如图所示的方式摆放,与相交于点,将直线绕点按照逆时针方向旋转 ()后,,则的值为( )
A. B. C. D.
6、已知三角形的一边长是6 cm,这条边上的高是(x+4)cm,要使这个三角形的面积不大于30 cm2,则x的取值范围是( )
A.x>6 B.x≤6 C.x≥-4 D.-4<x≤6
7、使分式有意义的x的取值范围是( )
A. B. C. D.
8、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x元,根据题意列方程为( )
A. B.
C. D.
9、如图,在数轴上有三个点A、B、C,分别表示数,,5,现在点C不动,点A以每秒2个单位长度向点C运动,同时点B以每秒个单位长度向点C运动,则先到达点C的点为( )
A.点A B.点B C.同时到达 D.无法确定
10、有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是的弦,是上一点,交于点,连接,,若,,则的度数为________.
2、已知与互为相反数,则的值是____.
3、已知,则a=_____, b=________.
4、用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是_____.
5、若不等式组的解集是-1<x<1,则(a+b)2019=________.
三、解答题(5小题,每小题10分,共计50分)
1、硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).
A方法:剪6个侧面;
B方法:剪4个侧面和5个底面.
现有19张硬纸板,裁剪时x张用A方法,其余用B方法.
(1)分别求裁剪出的侧面和底面的个数(用x的代数式表示)
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
2、如图,线段厘米,点D和点C在线段AB上,且,.点P从点A出发以4厘米/秒的速度沿射线AD向点C运动,点P到达点C所在位置后立即按照原路原速返回,到达点D所在位置后停止运动,点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,点Q到达点D所在的位置后停止运动.点P和点Q同时出发,点Q运动的时间为t秒.
(1)求线段AD的长度;
(2)当点C恰好为PQ的中点时,求t的值;
(3)当厘米时,求t的值.
3、在平面直角坐标系中,抛物线(m为常数)的顶点为M,抛物线与直线交于点A,与直线交于点B,将抛物线在A、B之间的部分(包含A、B两点且A、B不重合)记作图象G.
(1)当时,求图象G与x轴交点坐标.
(2)当∥x轴时,求图象G对应的函数值y随x的增大而增大时x的取值范围.
(3)当图象G的最高点与最低点纵坐标的差等于1时,求m的取值范围.
(4)连接AB,以AB为对角线构造矩形AEBF,并且矩形的各边均与坐标轴垂直,当点M与图象G的最高点所连线段将矩形AEBF的面积分为两部分时,直接写出m值.
4、如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为点D.
(1)求该抛物线的表达式及点C的坐标;
(2)联结BC、BD,求∠CBD的正切值;
(3)若点P为x轴上一点,当△BDP与△ABC相似时,求点P的坐标.
5、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y=﹣1的性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;
x | …… | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | …… |
y | …… |
| ﹣ |
| 1.5 |
| 1.5 | 0 |
| ﹣ | …… |
(2)请根据这个函数的图象,写出该函数的一条性质 ;
(3)已知函数的图象如图所示,请你根据函数的图象,直接写出不等式的解集,(近似值保留一位小数,误差不超过0.2)
-参考答案-
一、单选题
1、B
【分析】
根据图示,判断a、b的范围:﹣3<a<0,b>3,根据范围逐个判断即可.
【详解】
解:根据图示,可得﹣3<a<0,b>3,
∴(1)b﹣a>0,故错误;
(2)|a|<|b|,故正确;
(3)a+b>0,故正确;
(4)<0,故错误.
故选B.
【点睛】
此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.
2、B
【分析】
指数是-3,说明数字1前面有3个0
【详解】
指数是-3,说明数字1前面有3个0,
故选B
【点睛】
在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)
3、C
【分析】
先根据旋转的性质得∠CAE=60°,再利用三角形内角和定理计算出∠AFC=100°,然后根据邻补角的定义易得∠AFB=80°.
【详解】
∵△ABC绕点A顺时针旋转60°得△ADE,
∴∠CAE=60°,
∵∠C=20°,
∴∠AFC=100°,
∴∠AFB=80°.
故选C.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
4、C
【解析】
【分析】
根据不等式的性质分别对每一项进行分析,即可得出答案.
【详解】
A.∵a<b,根据不等式两边同时加上2,不等号方向不变,∴2+a<2+b,正确;
B.∵a<b,根据不等式两边同时加-5,不等号方向不变,∴a-5<b-5,正确;
C.∵a<b,根据不等式两边同时乘以-2,不等号方向改变,∴﹣2a>﹣2b,本选项不正确;
D.∵a<b,根据不等式两边同时乘以,不等号方向不变,∴<,正确.
故选C.
【点睛】
本题考查了不等式的性质,掌握不等式的性质是解决本题的关键;不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
5、C
【分析】
先求出∠O的度数,再根据垂直的定义即可得到旋转的度数.
【详解】
解:根据三角形外角的性质可得∠O=140°-80°=60°,
已知将直线绕点按照逆时针方向旋转 ()后,,
故n=90°-60°
=30°.
故选C.
【点睛】
本题考查三角形的相关知识,掌握三角形内角和定理和三角形外角的性质是解题关键.
6、D
【解析】
【分析】
根据三角形面积公式列出不等式组,再解不等式组即可.
【详解】
由题意得:,解得:-4<x≤6.
故选D.
【点睛】
本题考查了一元一次不等式组的应用.解题的关键是利用三角形的面积公式列出不等式组.
7、B
【分析】
根据分式有意义的条件,即分母不为零求出x的取值范围即可.
【详解】
解:由题意得:,
解得,
故选:B.
【点睛】
本题主要考查了分式有意义的条件,熟知分式有意义,即分母不为零是解题的关键.
8、C
【分析】
首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程.
【详解】
首先设甲种陀螺单价为x元,则乙种陀螺单价为元,
根据题意可得:,
故选:C.
【点睛】
本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.
9、A
【分析】
先分别计算出点A与点C之间的距离为10,点B与点C之间的距离为8.5,再分别计算出所用的时间.
【详解】
解:点A与点C之间的距离为:,
点B与点C之间的距离为:,
点A以每秒2个单位长度向点C运动,所用时间为(秒);
同时点B以每秒个单位长度向点C运动,所用时间为(秒);
故先到达点C的点为点A,
故选:A.
【点睛】
本题考查了数轴,解决本题的关键是计算出点A与点C,点B与点C之间的距离.
10、A
【详解】
【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.
【详解】设的质量为x,的质量为y,的质量为:a,
假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,
故A选项错误,符合题意,
故选A.
【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.
二、填空题
1、
【分析】
设∠AOC=x°,根据圆周角定理得到∠B的度数,根据三角形的外角的性质列出方程,解方程得到答案.
【详解】
解:设∠AOC=x°,则∠B=x°,
∵∠AOC=∠ODC+∠C,∠ODC=∠B+∠A,
∴x=20°+30°+x, 解得x=100°.
故选A.
【点睛】
本题主要考查的是圆周角定理和三角形的外角的性质,掌握一条弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键.
2、
【分析】
首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可.
【详解】
解:∵与互为相反数,
∴+=0,
∴
∴
∴.
故答案为:.
【点睛】
本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键.
3、2 2
【分析】
先根据异分母分式的加法法则计算,再令等号两边的分子相等即可.
【详解】
解:∵,
∴,
∴a(x−2)+b(x+2)=4x,即(a+b)x−2(a−b)=4x,
∴a+b=4,a-b=0,
∴a=b=2,
故答案为:2,2.
【点睛】
本题考查的是分式的加减法,在解答此类问题时要注意通分的应用.
4、2
【详解】
解:扇形的弧长==2πr,
∴圆锥的底面半径为r=2.
故答案为2.
5、-1
【解析】
【分析】
解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后代入即可得到最终答案.
【详解】
解不等式x﹣a>2,得:x>a+2,解不等式b﹣2x>0,得:x.
∵不等式的解集是﹣1<x<1,∴a+2=﹣1,1,解得:a=﹣3,b=2,则(a+b)2019=(﹣3+2)2019=﹣1.
故答案为:﹣1.
【点睛】
本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.
三、解答题
1、(1)裁剪出的侧面的个数为个,底面的个数为个;(2)30个.
【分析】
(1)先求出有张硬纸板用方法裁剪,再根据方法和方法列出代数式即可得;
(2)结合(1)的答案,根据1个盒子由3个侧面和2个底面构成建立方程,解方程求出的值,由此即可得出答案.
【详解】
解:(1)由题意得:有张硬纸板用方法裁剪,张硬纸板用方法裁剪,
则裁剪出的侧面的个数为,
裁剪出的底面的个数为,
答:裁剪出的侧面的个数为个,底面的个数为个;
(2)由题意得:,
解得,
则能做盒子的个数为(个),
答:若裁剪出的侧面和底面恰好全部用完,能做30个盒子.
【点睛】
本题考查了列代数式和整式的加减、一元一次方程的应用,正确找出等量关系,并建立方程是解题关键.
2、(1);(2)或;(3)、、8,
【分析】
(1)先求出AC,再求出DC,根据AD=AC-DC即可;
(2)表示出CP、CQ的长度,再根据CP=CQ列方程即可,需要注意P到C之前和之后两种情况讨论;
(3)表示出BP、BQ的长度,再根据列方程即可,需要注意P到C之前和之后以及P到D之前之后的多种情况讨论;
【详解】
(1)∵,
∴
∵
∴
∴
(2)∵点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,
∴,
P到达C之前时
∵点C恰好为PQ的中点
∴此时P在C左边,Q在C右边,且CP=CQ
∴
解得
P到达C之后时
∵点C恰好为PQ的中点
∴此时P在C左边,Q在C右边,且CP=CQ
∴
解得
故当点C恰好为PQ的中点时或
(3)当P、Q到达C之前时,
,
∴
解得
当P到达C之后、Q到达C之前时,
,
∴
解得
当P到达D点时此时,,,
当P到达D点以后、Q到达D之前,,
解得
综上当厘米时,、、8,
【点睛】
此题考查线段和差计算、列一元一次方程解应用题等知识与方法,解题的关键是弄清点在运动时的出发点、方向、速度以及两个动点的运动属于相遇问题还是追及问题等.
3、
(1)(,0)
(2)
(3)
(4)-3.5或-5或0或.
【分析】
(1)求出抛物线解析式和点A、B的坐标,确定图象G的范围,求出与x轴交点坐标即可;
(2)和代入,根据纵坐标相等求出m的值,再根据二次函数的性质写出取值范围即可;
(3)分别求出抛物线顶点坐标和点A、B的坐标,根据图象G的最高点与最低点纵坐标的差等于1,列出方程和不等式,求解即可;
(4)求出A、B两点坐标,再求出直线AM、BM的解析式,根据将矩形AEBF的面积分为两部分,列出方程求解即可.
(1)
解:当时,抛物线解析式为,直线为直线,即y轴;此时点A的坐标为(0,-2);当时,,
点B的坐标为(-3,1);
当y=0时,,解得,,,
∵,
∴舍去;
图象G与x轴交点坐标为(,0)
(2)
解:当∥轴时,把和代入得,
,
解得,,
当时,点A、B重合,舍去;
当时,抛物线解析式为,对称轴为直线,点A的坐标为(-1,-7),点B的坐标为(-3,-7);
因为,
所以,图象G对应的函数值y随x的增大而增大时x的取值范围为:;
(3)
解:抛物线化成顶点式为,
顶点坐标为: ,
当时,,点A的坐标为,
当时,,点B的坐标为,
点A关于对称轴的对称点的坐标为,当时,,此时图象G的最低点为顶点,则,解得,(舍去),,
当,时,,此时图象G的最低点为顶点,则,等式恒成立,则,
当时,此时图象G的最低点为B,图象G的最高点为A,则,解得,(舍去),
综上,m的取值范围为.
(4)
解:由前问可知,点A的坐标为,点B的坐标为,点M的坐标为,
设直线AM、BM的解析式分别为,,把点的坐标代入得,
,,
解得,,,
所以,直线AM、BM的解析式分别为,,
如图所示,BM交AE于C,把代入得,
,解得,,
,,
因为,点M与图象G的最高点所连线段将矩形AEBF的面积分为两部分,
所以,,
解得,,(此时,A、B两点重合,舍去);
如图所示,BM交AF于L,同理可求L点纵坐标为:,
,,
可列方程为,
解得,,(此时,A、B两点重合,舍去);
如图所示,AM交BF于P,同理可求P点横坐标为:,
,,
可列方程为,
解得,,(此时,A、B两点重合,舍去);
如图所示,AM交EB于S,同理可求S点纵坐标为:,
,,
可列方程为,
解得,,(此时,A、B两点重合,舍去);
综上,m值为-3.5或-5或0或.
【点睛】
本题考查了二次函数的综合,解题关键是熟练运用二次函数知识,树立数形结合思想和分类讨论思想,通过点的坐标,建立方程求解
4、
(1),点C的坐标为(0,-3)
(2)
(3)(-3,0)或(-,0)
【分析】
(1)把A、B两点坐标代入函数求出b,c的值即可求函数表达式;再令x=0,求出y从而求出C点坐标;
(2)先求B、C、D三点坐标,再求证△BCD为直角三角形,再根据正切的定义即可求出;
(3)分两种情况分别进行讨论即可.
(1)
解:(1)将A(-1,0)、B(3,0)代入,得
解得:
所以,.
当x=0时,.∴点C的坐标为(0,-3).
(2)
解:连接CD,过点D作DE⊥y轴于点E,
∵,
∴点D的坐标为(1,-4).
∵B(3,0)、C(0,-3)、D(1,-4),E(0,-4),
∴OB=OC=3,CE=DE=1,
∴BC=,DC=,BD=.
∴.
∴∠BCD=90°.
∴tan∠CBD=.
(3)
解:∵tan∠ACO=,
∴∠ACO=∠CBD.
∵OC =OB,
∴∠OCB=∠OBC=45°.
∴∠ACO+∠OCB =∠CBD+∠OBC.
即:∠ACB =∠DBO.
∴当△BDP与△ABC相似时,点P在点B左侧.
(i)当时,
∴.
∴BP=6.
∴P(-3,0).
(ii)当时,
∴.
∴BP=.
∴P(-,0).
综上,点P的坐标为(-3,0)或(-,0).
【点睛】
本题是二次函数的综合题,掌握相关知识是解题的关键.
5、
(1)见解析
(2)函数图象是轴对称图形,它的对称轴为y轴
(3)-0.4<x<1或x>2
【分析】
(1)将x=-2,0,3分别代入解析式即可得y的值,再画出函数的图象;
(2)结合图象即可求得;
(3)根据图象求得即可.
(1)
解:补充完整下表为:
x | …… | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | …… |
y | …… |
| 1.5 | 4 | 1.5 | 0 | …… |
画出函数的图象如图:
(2)
该函数图象是轴对称图形,它的对称轴为y轴,
故答案为:函数图象是轴对称图形,它的对称轴为y轴.
(3)
由图象可知:不等式的解集为-0.4<x<1或x>2.
【点睛】
本题主要考查一次函数的图象和性质,一次函数与一元一次方程,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.
【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解): 这是一份【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共26页。试卷主要包含了下列说法正确的是.,使分式有意义的x的取值范围是,计算3.14-的结果为 .等内容,欢迎下载使用。
【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共20页。试卷主要包含了使分式有意义的x的取值范围是,下列等式成立的是,有下列四种说法,如果,那么的取值范围是等内容,欢迎下载使用。