【历年真题】湖南省汨罗市中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面的图形中,是轴对称图形但不是中心对称图形的是( )
A.B.C.D.
2、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
A.B.C.D.
3、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A.B.C.D.
4、下列几何体中,截面不可能是长方形的是( )
A.长方体B.圆柱体
C.球体D.三棱柱
5、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果D.了解某隔离小区居民新冠核酸检查结果
6、下列式子中,与是同类项的是( )
A.abB.C.D.
7、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
A.1B.2020C.2021D.2022
8、不等式的最小整数解是( )
A.B.3C.4D.5
9、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
A.B.C.D.
10、下列运算正确的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=(k≠0)的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.
2、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
3、《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作.其中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:有若干人共同购买某种物品,如果每人出8钱,则多3钱;如果每人出7钱,则少4钱,问共有多少人?物品的价格是多少钱?用一元一次方程的知识解答上述问题设共有x人,依题意,可列方程为______.
4、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
5、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题(5小题,每小题10分,共计50分)
1、计算:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2.
2、(数学概念)如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.
(1)(概念理解)若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;
(2)(概念理解)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);
(3)(概念应用)如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.
3、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
(1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
①直线;②双曲线;③抛物线.
(2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
(3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
4、(1)如图1,四边形ABCD是矩形,以对角线AC为直角边作等腰直角三角形EAC,且.请证明:;
(2)图2,在矩形ABCD中,,,点P是AD上一点,且,连接PC,以PC为直角边作等腰直角三角形EPC,,设,,请求出y与x的函数关系式;
(3)在(2)的条件下,连接BE,若点P在线段AD上运动,在点P的运动过程中,当是等腰三角形时,求AP的长.
5、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-参考答案-
一、单选题
1、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
D、是轴对称图形,不是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、A
【分析】
根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
【详解】
解:B是俯视图,C是左视图,D是主视图,
故四个平面图形中A不是这个几何体的三视图.
故选:A.
【点睛】
本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
3、A
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
4、C
【分析】
根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.
【详解】
解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,
故选:C.
【点睛】
此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.
5、D
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
6、D
【分析】
根据同类项是字母相同,相同字母的指数也相同的两个单项式进行解答即可.
【详解】
解:A、ab与ab2不是同类项,不符合题意;
B、a2b与ab2不是同类项,不符合题意;
C、ab2c与ab2不是同类项,不符合题意;
D、-2ab2与ab2是同类项,符合题意;
故选:D.
【点睛】
本题考查同类项,理解同类项的概念是解答的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
7、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
8、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
9、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
10、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
C、,故C选项正确;
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
二、填空题
1、40
【解析】
【分析】
根据待定系数法求出即可得到反比例函数的解析式;利用反比例函数系数的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积大正方形的面积小正方形的面积即可求出结果.
【详解】
解:反比例函数的图象经过点,
,
反比例函数的解析式为;
小正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,
设点的坐标为,
反比例函数的图象经过点,
,
,
小正方形的面积为,
大正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,且,
大正方形在第一象限的顶点坐标为,
大正方形的面积为,
图中阴影部分的面积大正方形的面积小正方形的面积.
【点睛】
本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数的几何意义,正方形的性质,熟练掌握反比例函数系数的几何意义是解决问题的关键.
2、20
【解析】
【分析】
根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
【详解】
解:如图,过B作BE⊥AC于E.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在直角三角形ABE中,
∠BAC=30°,AB=5,
∴BE=AB=,
S△ABC=AC•BE=10,
∴S▱ABCD=2S△ABC=20(cm2).
故答案为:20.
【点睛】
本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
3、8x-3=7x+4
【解析】
【分析】
根据物品的价格相等列方程.
【详解】
解:设共有x人,依题意,可列方程为8x-3=7x+4,
故答案为:8x-3=7x+4.
【点睛】
此题考查了古代问题的一元一次方程,正确理解题意是解题的关键.
4、18°##18度
【解析】
【分析】
由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
在△DCE和△BCE中,
,
∴△DCE≌△BCE(SAS),
∴∠CED=∠CEB=∠BED=63°,
∵∠CED=∠CAD+∠ADE,
∴∠ADE=63°-45°=18°,
故答案为:18°.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
5、##45度
【解析】
【分析】
根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
【详解】
解:∵和均为等边三角形,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴
在和中,
,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
三、解答题
1、
【分析】
根据整式的乘法公式及运算法则化简,合并即可求解.
【详解】
(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2
=a2-4b2-a2+4ab-4b2+8b2
=4ab.
【点睛】
此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及运算公式.
2、
(1)2;
(2)-7或-1或5;
(3)t的值为或或6或10.
【分析】
(1)由“靠近距离”的定义,可得答案;
(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;
(3)分四种情况进行讨论:①当点P在点A左侧,PA
解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB
∴点P到线段AB的“靠近距离”为:2
故答案为:2;
(2)
∵点A表示的数为-4,点B表示的数为2,
∴点P到线段AB的“靠近距离”为3时,有三种情况:
①当点P在点A左侧时,PA
∴-4-m=3
∴m=-7;
②当点P在点A和点B之间时,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵PA=m+4,PB=2-m,
如果m+4=3,那么m=-1,此时2-m=3,符合题意;
∴m=-1;
③当点P在点B右侧时,PB<PA,
∵点P到线段AB的“靠近距离”为3,
∴m-2=3,
∴m=5,符合题意;
综上,所求m的值为-7或-1或5.
故答案为-7或-1或5;
(3)
分四种情况进行讨论:①当点P在点A左侧,PA
②当点P在点A右侧,PA
③当点P在点B左侧,PB
④当点P在点B右侧,PB
综上,所求t的值为或或6或10.
【点睛】
本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.
3、
(1)①
(2)的取值范围是
(3)或
【分析】
(1)根据图形M与图形N是双联图形的定义可直接判断即可;
(2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
(3)根据双联图形的宝座进行判断即可.
(1)
选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
又的半径为2,
∴这两个图形有且只有两个公共点,
∴这两个图形是“双联图形”;
选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
故这两个图形不是“双联图形”;
选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
故这两个图形不是“双联图形”;
∴选①
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为①;
(2)
已知直线与抛物线有且只有两个公共点,
∴将代入抛物线中,得,
配方得,
∵方程有实数解,
∴即
又直线不是双曲线的“双联图形”,
∴直线与双曲线最多有一个公共点,
即当时,代入得,,即,
∴实数的取值范围是;
(3)
∵是二次函数,
∴
∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
∴当时,二次函数的图象与的图象没有交点,
∴不成立;
当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
把C(1,4),B(4,0)代入,得
,
∴,
∴y=-x+4,
∵抛物线与BC不想交,
∴,即ax2+(2a+1)x+a-1=0无实数根,
∴(2a+1)2-4a(a-1)<0,
解得a<,
又当时,要满足,相当于,所以;
∴;
②当抛物线与AC和BC相交时,
当x=4时,要满足,相当于,所以,,
∴;
综上,a的取值范围为:或
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题属于圆综合题,考查了直线与圆的位置关系,解直角三角形,切线的判定和性质,图形M与图形N是和谐图形的定义等知识,解题的关键是理解题意,学会寻找特殊点,特殊位置解决问题.
4、(1)证明见解析;(2);(3)或
【分析】
(1)根据矩形和勾股定理的性质,得;再根据直角等腰三角形的性质计算,即可完成证明;
(2)根据矩形和勾股定理的性质,得,再根据勾股定理、直角等腰三角形的性质计算,即可得到答案;
(3)过点E作于点F,交AD于点Q,通过证明四边形和四边形是矩形,得,根据等腰直角三角形性质,推导得,通过证明,得,根据题意,等腰三角形分三种情况分析,当时,根据(2)的结论,得:,通过求解一元二次方程,得;当时,根据勾股定理列一元二次方程并求解,推导得不成立,当时,结合矩形的性质,计算得,从而完成求解.
【详解】
(1)∵四边形ABCD是矩形,AC是对角线
∴,
∴
∵以AC为直角边作等腰直角三角形EAC,且
∴;
(2)∵四边形ABCD是矩形,
∴,
∵以PC为直角边作等腰直角三角形EPC,
∴
∴;
(3)过点E作于点F,交AD于点Q,
∴,
∵四边形ABCD是矩形
∴,,
∴四边形和四边形是矩形
∴
∵等腰直角三角形EPC,
∴,
∴
∴
在和中
∴,
∴,
∴,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
①当时,得:,
∴,
解得,
∵,故舍去;
②当时,得:
,
∴
∵
∴无实数解;
③当时
∵
∴
∵,,
∴四边形为矩形
∴
∵,
∴
∴
∴综上所述,或时,是等腰三角形.
【点睛】
本题考查了直角三角形、等腰三角形、勾股定理、矩形、一元二次方程、全等三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元二次方程的性质,从而完成求解.
5、见详解
【分析】
先找对称轴,再得到个点的对应点,即可求解.
【详解】
解:根据题意画出图形,如下图所示:
【点睛】
本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
【历年真题】湖南省张家界市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解): 这是一份【历年真题】湖南省张家界市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解),共27页。试卷主要包含了一元二次方程的根为,如图,E,抛物线的顶点为,下列运算正确的是等内容,欢迎下载使用。
【历年真题】贵州省中考数学三年高频真题汇总卷(含详解): 这是一份【历年真题】贵州省中考数学三年高频真题汇总卷(含详解),共21页。试卷主要包含了下列函数中,随的增大而减小的是,下列方程中,解为的方程是等内容,欢迎下载使用。
【历年真题】贵州省兴仁市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解): 这是一份【历年真题】贵州省兴仁市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了生活中常见的探照灯等内容,欢迎下载使用。