|试卷下载
搜索
    上传资料 赚现金
    【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解)
    立即下载
    加入资料篮
    【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解)01
    【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解)02
    【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解)

    展开
    这是一份【真题汇编】湖南省武冈市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共24页。

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知点是一次函数上的一个点,则下列判断正确的是( )
    A.B.y随x的增大而增大
    C.当时,D.关于x的方程的解是
    2、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
    A.24B.27C.32D.36
    3、下面四个立体图形的展开图中,是圆锥展开图的是( ).
    A.B.C.D.
    4、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
    A.16B.19C.24D.36
    5、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    6、下面的图形中,是轴对称图形但不是中心对称图形的是( )
    A.B.C.D.
    7、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    8、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    售量为台,则关于的函数解析式为( )
    A.B.
    C.D.
    9、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
    A.B.C.D.
    10、若和是同类项,且它们的和为0,则mn的值是( )
    A.-4B.-2C.2D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,围棋盘的方格内,白棋②的位置是,白棋④的位置是,那么黑棋①的位置应该表示为______.
    2、若关于的不等式的解集为,则的取值范围为__.
    3、如图,Rt △ABC,∠B=90∘,∠BAC=72°,过C作CF∥AB,联结 AF 与 BC 相交于点 G,若 GF=2AC,则 ∠BAG=_____________°.
    4、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
    5、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、计算:(﹣)2021×(3)2020×(﹣1)2022.
    2、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)如图1,求的度数;
    (2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
    (3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
    3、(数学概念)如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.
    (1)(概念理解)若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;
    (2)(概念理解)若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);
    (3)(概念应用)如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.
    4、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知,,求证:.
    将证明过程补充完整,并在括号内填写推理依据.
    证明:∵_____________(已知)
    ∴(_______________________)
    ∴.________(____________________)
    ∵(已知)
    ∴________(等量代换)
    ∴(___________________)
    5、解方程:.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    A.该一次函数经过一、二、四象限
    , y随x的增大而减小,
    故A,B不正确;
    C. 如图,设一次函数与轴交于点
    则当时,,故C不正确
    D. 将点坐标代入解析式,得
    关于x的方程的解是
    故D选项正确
    故选D
    【点睛】
    本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.
    2、C
    【分析】
    利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
    【详解】
    解:∵AD=DE,S△BDE=96,
    ∴S△ABD=S△BDE=96,
    过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
    ∵AD平分∠BAC,
    ∴DG=DF,
    ∴△ACD与△ABD的高相等,
    又∵AB=3AC,
    ∴S△ACD=S△ABD=.
    故选:C.
    【点睛】
    本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
    3、B
    【分析】
    由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
    【详解】
    解:选项A是四棱柱的展开图,故A不符合题意;
    选项B是圆锥的展开图,故B符合题意;
    选项C是三棱柱的展开图,故C不符合题意;
    选项D是圆柱的展开图,故D不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选B
    【点睛】
    本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
    4、C
    【分析】
    分别求出各视图的面积,故可求出表面积.
    【详解】
    由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
    故表面积为2×(4+3+5)=24
    故选C.
    【点睛】
    此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
    5、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    6、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
    B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、是轴对称图形,不是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、C
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:
    A、不是中心对称图形,是轴对称图形,故此选项错误;
    B、是中心对称图形,不是轴对称图形,故此选项错误;
    C、是中心对称图形,也是轴对称图形,故此选项正确;
    D、不是中心对称图形,是轴对称图形,故此选项错误;
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、B
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    第3年的销售量为,
    故选:B.
    【点睛】
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    9、D
    【分析】
    根据题意得出∠1=15°,再求∠1补角即可.
    【详解】
    由图形可得
    ∴∠1补角的度数为
    故选:D.
    【点睛】
    本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
    10、B
    【分析】
    根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
    【详解】
    解:∵和是同类项,且它们的和为0,
    ∴2+m=3,n-1=-3,
    解得m=1,n=-2,
    ∴mn=-2,
    故选:B.
    【点睛】
    此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
    二、填空题
    1、
    【解析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    先根据白棋②的位置是,白棋④的位置是确定坐标系,然后再确定黑棋①的坐标即可.
    【详解】
    根据图形可以知道,黑棋①的位置应该表示为
    故答案为:
    【点睛】
    此题主要考查了坐标确定位置,解决问题的关键是正确建立坐标系.
    2、
    【解析】
    【分析】
    根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.
    【详解】
    解:不等式的解集为,


    故答案为:.
    【点睛】
    本题考查了一元一次不等式的性质,解一元一次不等式,掌握不等式性质,不等式的两边同时乘以或除以一个负数,不等号的方向发生改变是解题关键.
    3、24
    【解析】
    【分析】
    取FG的中点E,连接EC,根据直角三角形斜边上的中线等于斜边的一半可得EC=AC,从而可推出∠EAC=∠AEC=∠F+∠ECF=2∠F,已知,∠BAC=72°,则不难求得∠BAG的度数.
    【详解】
    解:如图,取FG的中点E,连接EC.
    ∵FC∥AB,
    ∴∠GCF=90°,
    ∴EC=FG=AC,
    ∴∠EAC=∠AEC=∠F+∠ECF=2∠F,
    设∠BAG=x,则∠F=x,
    ∵∠BAC=72°,
    ∴x+2x=72°,
    ∴x=24°,
    ∴∠BAG=24°,
    故答案为:24.
    【点睛】
    本题考查了直角三角形斜边上的中线,平行线的性质以及角的计算,解题的关键是构造三个等腰三角形.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、49
    【解析】
    【分析】
    延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
    【详解】
    如图,延长FE交AB于点M,则,,
    ∵四边形ABCD是正方形,
    ∴,
    ∴是等腰直角三角形,
    ∴,
    在中,,
    ∴,
    ∴.
    故答案为:49.
    【点睛】
    本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
    5、19.2
    【解析】
    【分析】
    点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.
    【详解】
    解:如图所示:点P关于直线AB、AC的对称点分别为M、N,
    由图可得:,
    当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,,
    ∵等腰面积为48,,
    ∴,

    ∴,
    故答案为:.
    【点睛】
    题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.
    三、解答题
    1、
    【分析】
    直接利用积的乘方的逆运算法则:以及有理数的混合运算法则计算得出答案.
    【详解】
    解:原式=


    【点睛】
    题考察了积的乘方运算,解题的关键是正确掌握相关运算法则.特别是要知道-1的偶次方是1.
    2、
    (1)22.5°;
    (2)d=2t;
    (3)5
    【分析】
    (1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
    (2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
    (3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
    (1)
    解:∵和关于y轴对称,
    ∴∠ABO=∠CBO,
    ∴∠ABC=2,
    ∵,
    ∴∠A=3,
    ∵∠A+=90°,
    ∴=22.5°;
    (2)
    解:∵和关于y轴对称,
    ∴∠BAO=∠BCO,
    ∵,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴OD=5t,AD=6t,
    ∵,
    ∴∠ADP=∠BCO,
    ∴∠ADP=∠BAO,
    ∴AP=DP,
    过点P作PH⊥AD于H,则AH=DH=3t,
    ∴OH=AH-AO=2t,
    ∴d=2t;
    (3)
    解:∵=22.5°,∠ABC=2=45°,AB=BC,
    ∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
    ∵,
    ∴∠APE=,∠AEP=45°,
    ∴∠EAP=∠DPQ=,
    ∵AP=DP,AE=PQ,
    ∴△EAP≌△QPD,
    ∴∠PDQ=∠APE=,
    ∴∠ODQ=90°,
    连接DQ,过P作PM⊥y轴于M,
    ∵∠AEP=45°,
    ∴∠MPF=∠MFP=45°,
    ∴MF=MP,
    ∵,MP=2t,
    ∴,
    ∵∠APE=,∠PBF=∠ABO=,
    ∴∠PBF=∠APE,
    ∴BF=,
    ∵,
    ∴,
    得t=1,
    ∴OA=1,OD=5,
    ∴点Q的横坐标为5.
    【点睛】
    此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.
    3、
    (1)2;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)-7或-1或5;
    (3)t的值为或或6或10.
    【分析】
    (1)由“靠近距离”的定义,可得答案;
    (2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;
    (3)分四种情况进行讨论:①当点P在点A左侧,PA③当点P在点B左侧,PB(1)
    解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB
    ∴点P到线段AB的“靠近距离”为:2
    故答案为:2;
    (2)
    ∵点A表示的数为-4,点B表示的数为2,
    ∴点P到线段AB的“靠近距离”为3时,有三种情况:
    ①当点P在点A左侧时,PA∵点A到线段AB的“靠近距离”为3,
    ∴-4-m=3
    ∴m=-7;
    ②当点P在点A和点B之间时,
    ∵PA=m+4,PB=2-m,
    如果m+4=3,那么m=-1,此时2-m=3,符合题意;
    ∴m=-1;
    ③当点P在点B右侧时,PB<PA,
    ∵点P到线段AB的“靠近距离”为3,
    ∴m-2=3,
    ∴m=5,符合题意;
    综上,所求m的值为-7或-1或5.
    故答案为-7或-1或5;
    (3)
    分四种情况进行讨论:①当点P在点A左侧,PA∴-3-(-6+2t)=2,∴t=;
    ②当点P在点A右侧,PA∴(-6+2t)-(-3)=2,∴t=;
    ③当点P在点B左侧,PB∴2+t-(-6+2t)=2,∴t=6;
    ④当点P在点B右侧,PB∴(-6+2t)-(2+t)=2,∴t=10;
    综上,所求t的值为或或6或10.
    【点睛】
    本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.
    4、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    先由,证明,可得,结合已知条件证明,再证明即可.
    【详解】
    解:证明:∵(已知)
    ∴(同旁内角互补,两直线平行)
    ∴.(两直线平行,内错角相等)
    ∵(已知)
    ∴(等量代换)
    ∴(同位角相等,两直线平行)
    【点睛】
    本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
    5、
    【分析】
    去分母,移项合并同类项,系数化为1即可求解.
    【详解】

    去分母得:.
    去括号得:
    移项合并同类项得:.
    系数化为1得:.
    【点睛】
    本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
    相关试卷

    【历年真题】湖南省怀化市中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】湖南省怀化市中考数学考前摸底测评 卷(Ⅱ)(含详解),共18页。

    【历年真题】湖南省衡阳市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【历年真题】湖南省衡阳市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共28页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。

    【真题汇编】中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【真题汇编】中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共20页。试卷主要包含了已知点A,下列计算正确的是,如果与的差是单项式,那么,若单项式与是同类项,则的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map