【历年真题】2022年北京市通州区中考数学考前摸底测评 卷(Ⅱ)(含答案解析)
展开2022年北京市通州区中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).
A. B.0 C. D.
2、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )
A.11.5×108 B.1.15×108 C.11.5×109 D.1.15×109
3、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
4、抛物线的顶点坐标是( )
A. B. C. D.
5、下列判断错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
6、下列命题中,真命题是( )
A.同位角相等
B.有两条边对应相等的等腰三角形全等
C.互余的两个角都是锐角
D.相等的角是对顶角.
7、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
8、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
9、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )
A. B.
C. D.
10、下列方程组中,二元一次方程组有( )
①;②;③;④.
A.4个 B.3个 C.2个 D.1个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果将方程变形为用含的式子表示,那么_______.
2、若∠α=55°25’,则∠α的补角为_______.
3、如图,在中,,,以为直角边作等腰直角,再以为直角边作等腰直角,…,按照此规律作图,则的长度为______,的长度为______.
4、如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=34°,则∠2=_____°.
5、长方形纸片ABCD,点E、F分别在边AB、AD上,连接EF,将沿EF翻折,得到,连接CE,将翻折,得到,点恰好落在线段上,若,则__________°.
三、解答题(5小题,每小题10分,共计50分)
1、(综合与实践)现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:
①根据光源确定榕树在地面上的影子;
②测量出相关数据,如高度,影长等;
③利用相似三角形的相关知识,可求出所需要的数据.
根据上述内容,解答下列问题:
(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;
(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;
(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为 米.
2、(1)解方程3(x+1)=8x+6;
(2)解方程组.
3、如图,楼顶上有一个5G信号塔AB,从与楼BC相距60m的D处观测5G信号塔顶部A的仰角为37°,观测5G信号塔底部B的仰角为30°,求5G信号塔AB的高度.(结果保留小数点后一位,参考数据:,,,,).
4、已知,,OC平分∠AON.
(1)如图1,射线与射线OB均在∠MON的内部.
①若,∠MOA= °;
②若,直接写出∠MOA的度数(用含的式子表示);
(2)如图2,射线OA在∠MON的内部,射线OB在∠MON的外部.
①若,求∠MOA的度数(用含的式子表示);
②若在∠MOA的内部有一条射线OD,使得,直接写出∠MOD的度数.
5、关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根 x1,x2.
(1)求 k 的取值范围;
(2)请问是否存在实数 k,使得 x1+x2=1﹣x1x2 成立?若存在,求出 k 的值;若不存在, 说明理由.
-参考答案-
一、单选题
1、C
【分析】
首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.
【详解】
解:由图可知:,
∴,,,,
∴,
故选:C.
【点睛】
本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.
2、D
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:11.5亿=1150000000=1.5×109.
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
4、A
【分析】
根据二次函数y=a(x-h)2+k的性质解答即可.
【详解】
解:抛物线的顶点坐标是,
故选A.
【点睛】
本题考查了二次函数y=a(x-h)2+k(a,h,k为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键. y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.
5、D
【分析】
根据等式的性质解答.
【详解】
解:A. 若,则,故该项不符合题意;
B. 若,则,故该项不符合题意;
C. 若,则,故该项不符合题意;
D. 若,则(),故该项符合题意;
故选:D.
【点睛】
此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
6、C
【分析】
根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.
【详解】
解:A、两直线平行,同位角相等,故本选项说法是假命题;
B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;
C、互余的两个角都是锐角,本选项说法是真命题;
D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;
故选:C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
7、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
8、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
9、B
【分析】
直接根据题意得出函数关系式,进而得出函数图象.
【详解】
解:由题意可得:t=,是反比例函数,
故只有选项B符合题意.
故选:B.
【点睛】
此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
10、C
【分析】
组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.
【详解】
解:①、符合二元一次方程组的定义,故①符合题意;
②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;
③、符合二元一次方程组的定义,故③符合题意;
④、该方程组中第一个方程是二次方程,故④不符合题意.
故选:.
【点睛】
本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
二、填空题
1、
【分析】
先移项,再系数化为1即可.
【详解】
解:移项,得:,
方程两边同时除以,得:,
故答案为:.
【点睛】
本题考查了解二元一次方程,将x看作常数,把y看做未知数,灵活应用等式的性质求解是关键.
2、
【分析】
根据补角的定义计算.
【详解】
解:∠α的补角为,
故答案为:.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
3、
【分析】
根据等腰直角三角形斜边等于直角边的倍分别求解即可.
【详解】
解:∵,
∴
同理可得,
⋯
故答案为:,.
【点睛】
本题考查了等腰直角三角形的性质,熟记等腰直角三角形斜边等于直角边的倍是解题的关键.
4、56
【分析】
先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=34°,
∴∠3=90°﹣34°=56°.
∵直尺的两边互相平行,
∴∠2=∠3=56°.
故答案为:56.
【点睛】
本题考查平行线的性质、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
5、61
【分析】
由翻折得到,根据,得到,利用求出答案.
【详解】
解:由翻折得,,
∵,
∴,
∵
∴,
故答案为:61.
【点睛】
此题考查了翻折的性质,角度的计算,正确掌握翻折的性质是解题的关键.
三、解答题
1、
(1)见解析
(2)
(3)
【分析】
(1)根据题意画出图形;
(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;
(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.
【小题1】
解:图①中GH即为所求;
【小题2】
∵CD∥PB,
∴△ECD∽△EPB,
∴,即,
解得:PB=9,
∵FG∥PB,
∴△HFG∽△HPB,
∴,即,
解得:FG=,
答:榕树FG的高度为米;
【小题3】
∵CD∥EF,
∴△BCD∽△BEF,
∴,即,
解得:BD=75,
∵CD∥EF,
∴△ACD∽△AMF,
∴,即,
解得:MF=,
∴EM=EF-MF=70-=(米),
故答案为:.
【点睛】
本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.
2、(1)x=;(2)
【分析】
(1)去括号,移项,合并同类项,系数化成1即可;
(2)①×2+②得出13x=26,求出x,把x=2代入①求出y即可.
【详解】
解:(1)3(x+1)=8x+6,
去括号,得3x+3=8x+6,
移项,得3x-8x=6-3,
合并同类项,得-5x=3,
系数化成1,得x=;
(2),
①×2+②,得13x=26,
解得:x=2,
把x=2代入①,得10+y=7,
解得:y=-3,
所以方程组的解是.
【点睛】
本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.
3、
【分析】
连接AD,根据题意得:∠BDC=30°,∠ADC=37°, ,然后利用锐角三角函数分别求出BC、AC,即可求解.
【详解】
解:如图,连接AD,
根据题意得:∠BDC=30°,∠ADC=37°, ,
在 中,∠BDC=30°,
∴ ,
在 中,∠ADC=37°,
∴ ,
∴ .
【点睛】
本题主要考查了解直角三角形,熟练掌握锐角三角函数是解题的关键.
4、(1)①40;②;(2)①;②.
【分析】
(1)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
(2)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,从而可得,再根据即可得.
【详解】
解:(1)①,
,
平分,
,
,
,
故答案为:40;
②,
,
平分,
,
,
;
(2)①,
,
平分,
,
,
;
②如图,由(2)①已得:,,
,
,
,
.
【点睛】
本题考查了与角平分线有关的角度计算,熟练掌握角的运算是解题关键.
5、
(1)
(2)存在,
【分析】
(1)根据关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根,≥0,代入计算求出k的取值范围.
(2)根据根与系数的关系,,,根据题意列出等式,求出k的值,根据k的值是否在取值范围内做出判断.
(1)
解:∵关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根
根据题意得,
解得.
(2)
解:存在.
根据根与系数关系,,
∵x1+x2=1﹣x1x2,
∴,
解得,
∵.
∴存在实数k=-3,使得x1+x2=1﹣x1x2.
【点睛】
本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k的取值范围来进取舍.
【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】2022年中考数学考前摸底测评 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了使分式有意义的x的取值范围是,某玩具店用6000元购进甲,如图,在数轴上有三个点A等内容,欢迎下载使用。
【历年真题】2022年河北保定中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【历年真题】2022年河北保定中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共26页。试卷主要包含了方程的解为,如图,在数轴上有三个点A,下列运算中,正确的是,已知,,,则等内容,欢迎下载使用。
【真题汇总卷】2022年北京市通州区中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【真题汇总卷】2022年北京市通州区中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了已知圆O的半径为3,AB,的相反数是,要使式子有意义,则,下列命题正确的是等内容,欢迎下载使用。