福建省泉州市安溪县2023-2024学年九年级数学第一学期期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,四边形 ABCD 是⊙O的内接四边形,若∠BOD=88°,则∠BCD 的度数是
A.88°B.92°C.106°D.136°
2.抛物线y=x2-2x+m与x轴有两个交点,则m的取值范围为( )
A.m>1B.m≥1C.m<1D.m≤1
3.如图,抛物线y=﹣(x+m)2+5交x轴于点A,B,将该抛物线向右平移3个单位后,与原抛物线交于点C,则点C的纵坐标为( )
A.B.C.3D.
4.若反比例函数y=的图象位于第二、四象限,则k的取值可以是( )
A.0B.1C.2D.以上都不是
5.如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四边形CEGF=S△ABG,其中正确的个数为( )
A.1个B.2个C.3个D.4个
6.在同一时刻,两根长度不等的竿子置于阳光之下,而它们的影长相等,那么这两根竿子的相对位置是( )
A.两根都垂直于地面B.两根平行斜插在地上C.两根不平行D.两根平行倒在地上
7.如图,在中,,,点、、分别在边、、上,且与关于直线DE对称.若,,则( ).
A.3B.5C.D.
8.已知如图,中,,点在边上,且,则的度数是( ).
A.B.C.D.
9.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )
A.x2+9x-8=0B.x2-9x-8=0
C.x2-9x+8=0D.2x2-9x+8=0
10.在△ABC中,∠C=90°.若AB=3,BC=1,则csB的值为( )
A.B.C.D.3
二、填空题(每小题3分,共24分)
11.已知且为锐角,则_____.
12.若二次根式有意义,则x的取值范围是 ▲ .
13.如图,,,△A2B2B3 是全等的等边三角形,点 B,B1,B2,B3 在同一条 直线上,连接 A2B 交 AB1 于点 P,交 A1B1 于点 Q,则 PB1∶QB1 的值为___.
14.某校七年级共名学生参加数学测试,随机抽取名学生的成绩进行统计,其中名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有______人.
15.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.
16.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=____.
17.如图,矩形ABCD的边AB上有一点E,ED,EC的中点分别是G,H,AD=4 cm,DC=1 cm,则△EGH的面积是______cm1.
18.如图,A是反比例函数y=(x>0)图象上一点,以OA为斜边作等腰直角△ABO,将△ABO绕点O以逆时针旋转135°,得到△A1B1O,若反比例函数y=的图象经过点B1,则k的值是_____.
三、解答题(共66分)
19.(10分)阅读下列材料:
小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):
①每人各自定出每件物品在心中所估计的价值;
②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);
③每件物品归估价较高者所有;
④计算差额(差额:每人所得物品的估价总值与均分值之差);
⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.
依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.
(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;
(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)
20.(6分)问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD
操作发现:(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.
(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.
拓展探究:(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC的数量关系,并说明理由.
21.(6分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
22.(8分)在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=8,DB=2,求CD的长
23.(8分)已知:矩形中,,,点,分别在边,上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线上.
(1)如图1所示,当时,求的长;
(2)如图2所示,当时,求的长;
(3)请写出线段的长的取值范围,及当的长最大时的长.
24.(8分)我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB=5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)
25.(10分)知识改变世界,科技改变生活。导航设备的不断更新方便了人们的出行。如图,某校组织学生乘车到蒲江茶叶基地C地进行研学活动,车到达A地后,发现C地恰好在A地的正东方向,且距A地9.1千米,导航显示车辆应沿南偏东60°方向行驶至B地,再沿北偏东53°方向行驶一段距离才能到达C地,求B、C两地的距离(精确到个位)
(参考数据)
26.(10分)如图所示,在中,于点E,于点F,延长AE至点G,使EG=AE,连接CG.
(1)求证:;
(2)求证:四边形EGCF是矩形.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、B
4、A
5、C
6、C
7、D
8、B
9、C
10、A
二、填空题(每小题3分,共24分)
11、2
12、.
13、
14、152.
15、2.
16、m
17、2
18、-1
三、解答题(共66分)
19、(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)详见解析.
20、(1)见解析;(2)当α=30°时,四边形AC′EC是菱形,理由见解析;(3)AD+DF=AC,理由见解析
21、(1)y=x2-2x-1.(2)M(1,-2).(1 P(1,-4).
22、CD=1
23、(1);(2);(3)
24、米
25、5千米
26、(1)见解析;(2)见解析.
2023-2024学年福建省泉州市鲤城北片区数学九年级第一学期期末调研试题含答案: 这是一份2023-2024学年福建省泉州市鲤城北片区数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
福建省泉州市安溪县2023-2024学年八年级上学期期末数学试题(含答案): 这是一份福建省泉州市安溪县2023-2024学年八年级上学期期末数学试题(含答案),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
福建省泉州市安溪县2023-2024学年数学九上期末检测试题含答案: 这是一份福建省泉州市安溪县2023-2024学年数学九上期末检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

