|试卷下载
搜索
    上传资料 赚现金
    专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题5.2 平行线及其判定-七年级数学下册同步精品讲义(教师版)(人教版).docx
    • 学生
      专题5.2 平行线及其判定-七年级数学下册同步精品讲义(学生版)(人教版).docx
    专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)01
    专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)02
    专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)03
    专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)01
    专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)02
    专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)03
    还剩59页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中5.2 平行线及其判定综合与测试优秀同步测试题

    展开
    这是一份初中5.2 平行线及其判定综合与测试优秀同步测试题,文件包含专题52平行线及其判定-七年级数学下册同步精品讲义教师版人教版docx、专题52平行线及其判定-七年级数学下册同步精品讲义学生版人教版docx等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。

    目标导航
    平行线定义;平行公理:同一平面内,经过直线外一点有且只有一条直线与已知直线平行。
    平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
    平行线的判定
    1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
    2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
    3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
    考点精讲
    考点1:平面内两直线位置关系
    典例:(2022秋·浙江绍兴·七年级校联考期中)下列说法正确的有(填序号):_____.
    ①同位角相等;
    ②在同一平面内,两条不相交的线段是平行线;
    ③在同一平面内,如果a//b,b//c,则a//c;
    ④在同一平面内,过直线外一点有且只有一条直线与已知直线平行.
    方法或规律点拨
    本题主要考查了平行线的性质及平行公理,理解平行的性质是解答本题的关键.
    巩固练习
    1.(2022春·八年级单元测试)在下列4个判断中:
    ①在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是( )
    A.4B.3C.2D.1
    2.(2022秋·河北石家庄·七年级统考期中)下列说法正确的是( )
    A.在同一平面内,不重合的两条直线一定相交
    B.经过直线a外一点P,可以画出无数条直线与直线a平行
    C.在同一平面内,若直线,,则
    D.在同一平面内,已知直线a,可以画出无数条直线与直线a垂直
    3.(2022秋·北京·七年级校考期中)下列语句正确的有( )
    ①量出直线外一点到直线的距离;
    ②在同一平面内,两条不同直线有且只有一个公共点
    ③从直线外一点到这条直线的垂线段叫作直线的距离
    ④两条直线有相交、垂直、平行三种位置关系
    A.个B.个C.个D.个
    4.(2022春·江苏·七年级专题练习)下列说法中,错误的有( )
    ①若,,则;
    ②若与相交,与相交,则与相交;
    ③相等的角是对顶角;
    ④过一点有且只有一条直线与已知直线平行.
    A.个B.个C.个D.个
    5.(2022春·七年级课时练习)下列说法正确的是( )
    A.在同一平面内,,,是直线,且,则
    B.在同一平面内,,,是直线,且,,则
    C.在同一平面内,,,是直线,且,则
    D.在同一平面内,,,是直线,且,则
    6.(2022秋·安徽合肥·七年级校考阶段练习)下列说法中,正确的个数有( )
    (1)过一点有无数条直线与已知直线平行
    (2)如果a∥b,a∥c,那么b∥c
    (3)在同一平面内,两条不重合的线段,如果它们不相交,那么就平行
    (4)在同一平面内,两条不重合的直线,如果它们不相交,那么就平行
    A.个B.个C.个D.个
    7.(2022·河北石家庄·石家庄市第四十一中学校考模拟预测)如图,在同一平面内.经过直线l外一点O有四条直线①②③④,借助直尺和三角板判断,与直线l平行的是( )
    A.①B.②C.③D.④
    8.(2022秋·黑龙江佳木斯·七年级桦南县第四中学校联考阶段练习)下列说法中,错误的是( )
    ①a与c相交,b与c相交,则a与b相交;
    ②若ab,bc,则ac;
    ③过直线外一点有且只有一条直线与已知直线平行;
    ④在同一平面内,两条直线的位置关系平行、相交、垂直三种.
    A.3个B.2个C.1个D.0个
    9.(2022·浙江·九年级专题练习)在同一平面内,不重合的三条直线的交点有( )个.
    A.1或2B.2或3C.1或3D.0或1或2或3
    10.(2022春·八年级单元测试)下列说法正确的有( )
    ①两点之间的所有连线中,线段最短;
    ②相等的角叫对顶角;
    ③过一点有且只有一条直线与已知直线平行;
    ④过一点有且只有一条直线与已知直线垂直;
    ⑤两点之间的距离是两点间的线段;
    ⑥在同一平面内的两直线位置关系只有两种:平行或相交.
    A.1个B.2个C.3个D.4个
    11.(2022秋·甘肃金昌·七年级校考期中)在同一平面内,两条直线可能的位置关系是 ( )
    A.平行 B.相交 C.相交或平行 D.垂直
    12.(2022春·山东淄博·八年级统考期中)语言是思维的工具,要学好几何证明,必须学会语言的表达和运用.几何语言可分为文字语言、符号语言与图形语言.例知:“直线a与b互相平行”是文字语言,“”是符号语言,那么“直线a与b互相平行”的图形语言是______.
    考点2:平行公理及应用
    典例: (2022秋·湖北宜昌·七年级统考期末)按要求完成下列问题,其中画图不写作法.
    (1)画出从点P到水渠边的最短距离,并说明道理.
    (2)过点P画出的平行线,这样的平行线有几条,为什么?
    (1)道理: .
    (2)理由: .
    方法或规律点拨
    本题主要考查了点到直线的距离,平行线的公理,熟练掌握点到直线,垂线段最短;过直线外一点,有且只有一条直线与已知直线平行是解题的关键.
    巩固练习
    1.(2022秋·辽宁沈阳·七年级校考期中)下列说法正确的是( )
    A.直线外一点到已知直线的垂线段叫做这点到直线的距离.
    B.过直线外一点有且只有一条直线与已知直线平行.
    C.三角形的三条高线交于一点.
    D.平面内,有且只有一条直线与已知直线垂直.
    2.(2022·全国·七年级专题练习)下列说法中是真命题正确的个数有( )个
    (1)若ab,bd,则ad;(2)过一点有且只有一条直线与已知直线平行;(3)两条直线不相交就平行;(4)过一点有且只有一条直线与已知直线垂直.
    A.1个B.2个C.3个D.4个
    3.(2022秋·辽宁葫芦岛·七年级统考阶段练习)下列说法中,正确的有( )
    若,,则;
    ②若与相交,与相交,则与相交;
    ③相等的角是对顶角;
    ④过一点有且只有一条直线与已知直线平行.
    A.3个B.2个C.1个D.0个
    4.(2022秋·广东广州·七年级校考期中)下列说法中正确的个数有( )
    ①同位角相等;②相等的角是对顶角;③直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离;④过一点有且只有一条直线与已知直线平行;⑤不相交的两条直线叫做平行线;⑥若直线a∥b,b∥c,则a∥c
    A.个B.个C.个D.个
    5.(2022春·七年级课时练习)下列说法正确的是( )
    ①若直线与没有交点,则;②平行于同一条直线的两条直线平行;③不相等的角一定不是对顶角;④过一点有且只有一条直线与已知直线平行;⑤过直线外一点作直线的垂线段,叫做点到直线的距离.
    A.①③④B.③⑤C.②③D.②④
    6.(2022秋·江苏无锡·七年级校考阶段练习)下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角; ③过一点有且仅有一条直线与已知直线平行; ④两点之间的距离是两点间的线段; ⑤若AB=BC,则点B为线段AC的中点;⑥不相交的两条直线叫做平行线.其中正确的个数是( )
    A.0个B.1个C.2个D.3个
    7.(2022秋·广西河池·七年级统考期中)若直线a,b,c,d有下列关系,则推理正确的是( )
    A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥d
    C.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c
    8.(2022秋·全国·七年级假期作业)下列说法正确的个数是( ).
    (1)两条直线不相交就平行;
    (2)在同一平面内,两条平行的直线有且只有一个交点;
    (3)过一点有且只有一条直线与已知直线平行;
    (4)平行于同一直线的两条直线互相平行;
    (5)两直线的位置关系只有相交、平行与垂直.
    A.0B.1C.2D.4
    9.(2022秋·湖北恩施·七年级校考期中)下列说法中正确的个数为( )
    ①在平面内,两条直线的位置关系只有两种:相交和垂直;
    ②在平面内,过一点有且只有一条直线与已知直线垂直;
    ③在平面内,过一点有且只有一条直线与已知直线平行;
    ④如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
    ⑤从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离.
    A.2个B.3个C.4个D.5个
    10.(2022秋·山东泰安·六年级校考阶段练习)已知直线a,b,c是同一平面内的三条不同直线,下面四个结论:
    ①若则;②若则;③若则;④若且与相交,则与相交,其中,结论正确的是( )
    A.①②B.③④C.①②③D.②③④
    11.(2022·河北·一模)经过直线 l 外一点O的四条直线中,与直线l相交的直线至少有( )
    A.1条B.2条C.3条D.4条
    12.(2022秋·山东菏泽·七年级统考期中)下列说法正确的个数有( )
    ①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a∥b,b∥c,则a∥c.
    A.1个B.2个C.3个D.4个
    13.(2022秋·江苏宿迁·七年级统考期中)下列说法中:
    ①过直线外一点有且只有一条直线与已知直线平行;
    ②已知直线a,b,c,若,则,
    ③相等的角是对顶角;
    ④直线外一点与直线上各点连接的所有线段中,垂线段最短.
    其中正确的有_________.(填序号)
    14.(2022春·八年级课时练习)如图,一组直线a,b,c,d是否都互相平行?
    考点3:平行线的判定
    典例:(2022·全国·七年级专题练习)如图,已知点O在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.
    (1)求证:∠AOE=∠ODG;
    (2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.
    方法或规律点拨
    本题考查了角平分线定义,垂直的定义,平行线的判定,等角的余角相等,正确识图是解题的关键.
    巩固练习
    1.(2022秋·辽宁沈阳·七年级沈阳市南昌初级中学(沈阳市第二十三中学)阶段练习)如图,点在的延长线上,则下列条件中.不能判定的是( )
    A.B.
    C.D.
    2.(2022春·全国·八年级专题练习)如图,在下列四组条件中,能判断的是( )
    A.B.C.D.
    3.(2022春·八年级单元测试)在同一平面内,将两个完全相同的三角板按如图摆放(直角边重合),可以画出两条互相平行的直线,这样操作的依据是( )
    A.两直线平行,同位角相等B.同位角相等,两直线平行
    C.两直线平行,内错角相等D.内错角相等,两直线平行
    4.(2022春·全国·八年级专题练习)如图所示,直线、被、所截,下列条件中能说明的是( )
    A.B.C.D.
    5.(2022秋·上海闵行·七年级校考阶段练习)如图,下列条件中,能够判定的是( )
    A.B.C.D.
    6.(2022秋·广东东莞·七年级校考期中)如图,下列条件中不能判定的是( )
    A.B.C.D.
    7.(2022秋·陕西渭南·七年级统考阶段练习)如图,与交于点O,下列条件中①;②;③;④,能判断的有( )
    A.1个B.2个C.3个D.4个
    8.(2022秋·广东东莞·七年级东莞市中堂中学校考期中)如图,点在的延长线上,下列条件不能判定的是( )
    A.B.C.D.
    9.(2022秋·福建福州·七年级校考期中)如图,过直线外一点作已知直线的平行线,其依据是( )
    A.两直线平行,同位角相等B.内错角相等,两直线平行
    C.同位角相等,两直线平行D.两直线平行,内错角相等
    10.(2022秋·广东东莞·七年级统考期中)如图,,下列结论正确的是( )
    ①若,则;
    ②若,则;
    ③若,则;
    ④若,则.
    A.①②B.②④C.②③④D.②
    11.(2022秋·四川雅安·七年级统考期中)如图所示,下列条件中,能判断的是( )
    A.B.C.D.
    12.(2022春·全国·八年级专题练习)如图,在下列给出的条件中,不能判定的是( )
    A.B.C.D.
    13.(2022秋·山东济南·七年级统考期中)如图,下列能判定的是( )
    A.B.C.D.
    14.(2022春·上海奉贤·八年级校考期中)如图,下列推论正确的是( )
    A.,B.,
    C.,D.,
    15.(2022秋·江苏盐城·七年级统考阶段练习)如图,点在的延长线上,下列条件中能判定的是( )
    A.B.
    C.D.
    16.(2022秋·重庆秀山·七年级校考期末)如图,点E在BC的延长线上,下列条件中能判断的是( )
    A.∠l=∠2B.∠3=∠4
    C.∠ADC=∠DCED.∠A+∠ABC=180°
    17.(2022·全国·七年级专题练习)如图,将一副三角板按如图放置,则下列结论:①;②;③如果,则有;④.其中正确的序号是( )
    A.①②③④B.①②④C.①②③D.①③④
    18.(2022秋·北京·七年级校考期中)数学课上,同学提出如下问题:如何证明“两直线平行,同位角相等”?老师说这个证明可以用反证法完成,思路及过程如下:
    如图1,我们想要证明“如果直线,被直线所截,,那么”
    如图2,
    假设,过点作直线,使,
    依据基本事实(1)___________,
    可得.这样过点就有两条直线,都平行于直线,
    这与基本事实(2)___________矛盾
    说明的假设是不对的,于是有.
    17.(2022秋·广东肇庆·七年级校考期中)如图,已知,,求证.
    20.(2022春·八年级课时练习)已知:如图,于点C,于点D,.求证:.
    21.(2022·全国·七年级专题练习)如图,直线、交于点O,,分别平分和,已知,且.
    (1)求的度数;
    (2)试说明的理由.
    考点4:与平行线有关的作图问题
    典例:(2022秋·河南商丘·七年级统考期末)如图,直线CD与直线AB相交与点O,直线外有一点P.
    (1)过点P画,交AB于点M,过点P画,垂足为N;
    (2)若、求∠COM的度数.
    方法或规律点拨
    本题考查了基本作图以及平行线的性质,培养了学生过直线外一点作已知直线的平行线和垂线的画图能力.
    巩固练习
    1.(2020春·吉林长春·七年级校考期末)在如图所示的正方形网格中,网格中纵向和横向线段的交点叫做格点在格点上.按下述要求画图:
    (1)画射线AC;
    (2)过点B画AC的平行线BD,点D在格点上;
    (3)在射线AC上取一点E,画线段BE,使其长度表示点B到AC的距离.
    2.(2022·全国·七年级专题练习)如图,己知点P、Q分别在的边上,按下列要求画图:
    (1)画射线;
    (2)过点P画垂直于射线的线段,垂足为点C;
    (3)过点Q画直线平行于射线.
    3.(2022秋·北京·七年级校考期中)画图并解答:
    如图,是内一点.按要求完成下列问题:
    (1)过作的垂线,垂足为点;
    (2)过点作的平行线,交于点:再过作的垂线段,垂足为点;
    (3)判断与的位置关系是:______.
    4.(2022春·江苏扬州·七年级期末)如图,方格纸中有一条直线AB和一格点P.
    (1)过点P画直线PM∥AB;
    (2)在直线AB上找一点N,使得PN最小.
    5.(2022秋·福建龙岩·七年级校考阶段练习)按以下各步画图(不写画法)
    (1)画出一个角∠MON,且使∠MON=150°;
    (2)在角∠MON内任取一点P,过点P作 ,交射线OM于点A;
    (3)过点A作垂线AB,使AB⊥ON,垂足为点B;
    (4)画射线PO(或反向延长射线PO)交垂线AB于点C
    线,射线,垂线,平行线的定义,属于中考常考题型.
    6.(2022秋·江西吉安·七年级统考期末)作图题:
    在如图所示的方格纸中不用量角器与三角尺,仅用直尺.
    (1)经过点,画线段平行于所在直线.
    (2)过点,画线段垂直于所在直线.
    7.(2022秋·海南省直辖县级单位·七年级统考期中)如图,请使用三角板与直尺画图:
    (1)过点Р作直线,交ON于点A;
    (2)过点Р向OM作垂线,垂足为点C,交ON于点D;
    8.(2022秋·河南许昌·七年级统考期中)如图,点P为内一点,按要求完成下列问题:
    (1)过点P作射线BC的垂线,垂足为点D;
    (2)过点P作射线BA的平行线,交射线BC于点E;
    (3)比较线段PD和PE的大小,并说明理由.
    9.(2022秋·北京·七年级北京市第五中学分校校考期末)如图,按要求画图并填空:
    (1)过点A作直线AB⊥OA,与∠O的另一边相交于点B;
    (2)画出点A到OB的垂线段,垂足为点C;
    (3)过点C作射线CDOA,交直线AB于点D;
    (4)图中与∠O相等的角有 个.
    10.(2022春·河南南阳·七年级统考期末)已知平面上有A、C、D三点,如图,请按要求完成下列问题.
    (1)画射线AD,线段AC;
    (2)利用圆规在射线AD上截取DB,使(保留作图痕迹),连接BC;
    (3)过点D画出AC的平行线DF,交BC于E;
    (4)通过测量猜测线段DE与AC之间的数量关系.
    11.(2022秋·河南郑州·七年级郑州外国语中学校考期中)如图所示的正方形网格,点、、都在格点上.
    (1)利用网格作图:
    ①过点画直线的平行线,并标出平行线所经过的格点;
    ②过点画直线的垂线,并标出垂线所经过的格点,垂足为点;
    (2)线段_________的长度是点到直线的距离;
    (3)比较大小:(填>、<或=),理由是:__________________.
    12.(2022秋·北京·七年级北京市第十三中学分校校考期中)如图,平面内有两条直线,点A在直线上,按要求画图并填空:
    (1)过点A画直线的垂线,垂足为点B,点A到直线距离为线段______的长度;
    (2)过点A画直线交直线于点于点C;
    (3)过点A画直线;
    13.(2022秋·河北承德·七年级统考期末)如图,直线与直线交于点,点为直线、外一点,根据下列语句画图,并作答:
    (1)过点画交于点;
    (2)过点画,垂足为;
    (3)点为直线上一点,连接,连接.
    14.(2022春·七年级课时练习)如图,在的正方形网格中,每个小正方形的边长是1,点M、N、P、Q均为格点(格点是指每个小正方形的顶点),线段MN经过点P.
    (1)过点P画MN的垂线;
    (2)过点Q画MN的平行线;
    (3)若格点F使△PFM的面积等于4,则这样的点F共有______个.
    15.(2022春·江苏宿迁·七年级统考期末)如图,已知∠AOB=30°,完成下列问题:
    (1)在射线OB上取一点C,使OC=2cm;
    (2)过点C画直线m,使m//OA;
    (3)过点O画直线l,使l⊥OA;
    (4)设直线m与直线l交于点D,度量线段OD= cm,∠OCD= 度.
    16.(2022秋·上海静安·七年级统考期中)按下列要求画图并填空
    已知直线AB、CD相交于点O,点P为这两条直线外一点
    (1)过点P画直线PE⊥AB,垂足为E
    (2)过点P画直线PF⊥CD,垂足为F
    (3)过点P画直线PM∥AB,交CD于点M
    (4)点P到直线CD的距离是线段 的长
    (5)直线PM与AB间的距离是线段 的长
    能力提升
    一、单选题(每题3分)
    1.(2022秋·浙江台州·七年级校联考阶段练习)在同一个平面内的直线a,b,c,若,,则b与c的关系是( )
    A.平行B.垂直C.相交D.不能确定
    2.(2022春·全国·七年级专题练习)如图,已知A、B、C三点,过点A可画直线BC的平行线的条数是( )
    A.0条B.1条C.2条D.无数条
    3.(2021春·七年级课时练习)下列说法中,错误的有( ).
    ①若与相交, 与相交,则与相交;
    ②若,那么;
    ③过一点有且只有一条直线与已知直线平行;
    ④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.
    A.3个B.2个C.1个D.0个
    4.(2021春·北京东城·八年级校考期末)如图,在下列条件中,能够证明的条件是( )
    A.B.
    C.D.
    5.(2022春·全国·八年级专题练习)如图,下列结论不成立的是( )
    A.如果∠1=∠3,那么
    B.如果∠2=∠4,那么
    C.如果∠1+∠2+∠C=180°,那么
    D.如果∠4=∠5,那么
    6.(2022秋·湖北襄阳·七年级校考阶段练习)如图直线,与直线相交,给出下列条件:
    ①;②;③;④,其中能判断的有几个( )
    A.1B.2C.3D.4
    二、填空题(每题3分)
    7.(2021秋·全国·七年级专题练习)直线a∥b,b∥c,则直线a与c的位置关系是________.
    8.(2021秋·内蒙古通辽·七年级统考期末)现有下列说法:
    ①过一点有且只有一条直线与已知直线垂直;
    ②过一点有且只有一条直线与已知直线平行;
    ③若,,则;
    ④若,的两边与的两边分别平行,则或;
    ⑤若,,则.
    其中正确的是_______(填写序号).
    9.(2022秋·吉林四平·七年级校考阶段练习)如图,要使,需补充一个条件,你认为这个条件应该是______(填一个条件即可).
    10.(2021秋·全国·七年级期末)下列说法正确的是________(填序号).
    ①同位角相等;②对顶角相等;③在同一平面内,不相交也不重合的两条射线一定平行;④过直线外一点有且只有一条直线与这条直线平行;⑤如果直线,那么;⑥垂线段最短;⑦过一点有且只有一条直线与已知直线垂直.
    11.(2022秋·河南漯河·七年级校考阶段练习)下列4个命题,
    ①在同一平面内,、、是直线,,,则;
    ②在同一平面内,、、是直线,,,则;
    ③在同一平面内,、、是直线,,,则;
    ④在同一平面内,、、是直线,,,则.
    正确的有_________(填写序号).
    12.(2022秋·湖北黄冈·七年级校考阶段练习)如图,不添加辅助线,请写出一个能判定ABCD的条件__
    三、解答题(13题5分,14题6分,15题7分)
    13.(2022秋·重庆铜梁·七年级统考期末)已知,如图:
    (1)过点B画直线BM∥AC;
    (2)延长BC至点D,使CD=BC;
    (3)过点A作BC的垂线AN,垂足为点N.
    (说明(1)至(3)用直尺或三角板画图,不写画法.)
    (4)在前面所作图中,若点N是BC的中点,CN=2cm,则BD的长为______cm
    14.(2022春·八年级课时练习)学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB和CD被直线EF所截,∠2=∠3,ABCD吗?说明理由.
    现请你补充完下面的说理过程:
    答:ABCD
    理由如下:
    ∵∠2=∠3(已知)
    且 ( )
    ∴∠1=∠2
    ∴ABCD( )
    15.(2022秋·陕西咸阳·七年级校联考期中)如图,已知点E在直线DC上,射线EF平分∠AED,过E点作,G为射线EC上一点,连接BG、AB,且.
    (1)试说明;
    (2)若试判断AB与EF平行吗?并说明理由.
    小贴士
    反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.
    在某些情形下,反证法是很有效的证明方法。
    相关试卷

    初中数学人教版七年级下册7.1.2平面直角坐标系优秀课后测评: 这是一份初中数学人教版七年级下册7.1.2平面直角坐标系优秀课后测评,文件包含专题71平面直角坐标系-七年级数学下册同步精品讲义教师版人教版docx、专题71平面直角坐标系-七年级数学下册同步精品讲义学生版人教版docx等2份试卷配套教学资源,其中试卷共144页, 欢迎下载使用。

    人教版七年级下册6.3 实数精品精练: 这是一份人教版七年级下册6.3 实数精品精练,文件包含专题63实数97题50页-七年级数学下册同步精品讲义教师版人教版docx、专题63实数97题50页-七年级数学下册同步精品讲义学生版人教版docx等2份试卷配套教学资源,其中试卷共69页, 欢迎下载使用。

    人教版七年级下册6.2 立方根优秀课堂检测: 这是一份人教版七年级下册6.2 立方根优秀课堂检测,文件包含专题62立方根-七年级数学下册同步精品讲义教师版人教版docx、专题62立方根-七年级数学下册同步精品讲义学生版人教版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题5.2 平行线及其判定(4大考点精讲)-2023-2024学年七年级数学下册同步精品导与练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map