搜索
    上传资料 赚现金
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册
    立即下载
    加入资料篮
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册01
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册02
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册03
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册04
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册05
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册06
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册07
    新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册08
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第二册6.4 平面向量的应用背景图课件ppt

    展开
    这是一份高中数学人教A版 (2019)必修 第二册6.4 平面向量的应用背景图课件ppt,共43页。PPT课件主要包含了素养目标•定方向,必备知识•探新知,解三角形,关键能力•攻重难,题型探究,易错警示,课堂检测•固双基等内容,欢迎下载使用。

    6.4 平面向量的应用6.4.3 余弦定理、正弦定理第1课时 余弦定理
    1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.借助于向量的运算,探索三角形边长与角度的关系,体会逻辑推理及数学运算素养.
    b2+c2-2bccs A
    c2+a2-2cacs B
    a2+b2-2abcs C
    [提醒] (1)利用余弦定理可以解两类有关三角形的问题①已知两边及其夹角,解三角形;②已知三边,解三角形.(2)余弦定理和勾股定理的关系在△ABC中,由余弦定理得c2=a2+b2-2abcs C,若角C=90°,则cs C=0,于是c2=a2+b2,这说明勾股定理是余弦定理的特例,余弦定理是勾股定理的推广.
    练一练:在△ABC中,符合余弦定理的是(  )A.c2=a2+b2-2abcs CB.c2=a2-b2-2bccs AC.b2=a2-c2-2bccs A[解析] 由余弦定理及其推论知只有A正确.故选A.
    一般地,三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的_______.已知三角形的几个元素求其他元素的过程叫做___________.
    想一想:已知三角形内角的余弦值求角时,是否存在多解的情况?提示:在已知三角形内角的余弦值求角时,由于函数y=cs x在(0,π)上单调递减,所以角的余弦值与角一一对应,故不存在多解的情况.
    [分析] (1)由余弦定理可直接求第三边;(2)先由余弦定理建立方程,从中解出a的长.
    [归纳提升] 已知两边及一角解三角形的两种情况(1)若已知角是其中一边的对角,可用余弦定理列出关于第三边的一元二次方程求解.(2)若已知角是两边的夹角,则直接运用余弦定理求出另外一边,再用余弦定理和三角形内角和定理求其他角.
    整理得AC2+3·AC-40=0,解得AC=5或AC=-8(不合题意,舍去),所以AC=5.
    (2)在△ABC中,a2-(b-c)2=bc,则A=(  )A.30° B.60°C.120° D.150°
    [归纳提升] 已知三角形三边求角,可先用余弦定理求一个角,继续用余弦定理求另一个角,进而求出第三个角.
            (1)在△ABC中,AB=3,BC=5,AC=7,则角B的余弦值是________.(2)在△ABC中,若(a+c)(a-c)=b(b-c),则A等于(  )A.90° B.60° C.120° D.150°
    [解析] (1)在△ABC中,AB=3,BC=5,AC=7,(2)因为(a+c)(a-c)=b(b-c),所以b2+c2-a2=bc,因为A∈(0°,180°),所以A=60°.
         在△ABC中,若b2sin2C+c2sin2B=2bccs Bcs C,试判断△ABC的形状.[分析] 利用余弦定理将已知等式化为边的关系.[解析] 已知等式变形为b2(1-cs2C)+c2(1-cs2B)=2bccs B·cs C,∴b2+c2=b2cs2C+c2cs2B+2bccs B·cs C,∵b2cs2C+c2cs2B+2bccs Bcs C=(bcs C+ccs B)2=a2,∴b2+c2=a2,∴△ABC为直角三角形.
    [归纳提升] 利用余弦定理判断三角形形状的方法及注意事项(1)利用余弦定理把已知条件转化为边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)统一成边的关系后,注意等式两边不要轻易约分,否则可能会出现漏解.
            在△ABC中,acs A+bcs B=ccs C,试判断△ABC的形状.
    通分得a2(b2+c2-a2)+b2(a2+c2-b2)+c2(c2-a2-b2)=0,展开整理得(a2-b2)2=c4.∴a2-b2=±c2,即a2=b2+c2或b2=a2+c2.根据勾股定理知△ABC是直角三角形.
    忽略三角形三边关系导致出错     设2a+1,a,2a-1为钝角三角形的三边,求实数a的取值范围.
    [错解] ∵2a+1,a,2a-1是三角形的三边,∴2a+1是三边长中最长的边,设其所对角为θ,∵2a+1,a,2a-1是钝角三角形的三边,
    [正解] ∵2a+1,a,2a-1是三角形的三边,要使2a+1,a,2a-1表示三角形的三边,还需a+(2a-1)>2a+1,解得a>2.
    设最长边2a+1所对的角为θ,∴a的取值范围是(2,8).
    [误区警示] 由于余弦定理及公式的变形较多,且涉及平方和开方等运算,可能会因不细心而导致错误.在利用余弦定理求出三角形的三边时,还要判断一下三边能否构成三角形.
            在钝角三角形ABC中,a=1,b=2,c=t,且C是最大角,求t的取值范围.
    [解析] 因为a,b,c是△ABC的三边,所以b-a1.在△ABC中,已知a2=b2+c2+bc,则角A等于(  )A.60° B.45°C.120° D.30°
    A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.是锐角或直角三角形
    [解析] 设BC=4t,则AB=5t(t>0),由余弦定理可得AC2=BC2+AB2-2AB·BCcsB,解得t=1,因此AB=5t=5.
    相关课件

    高中数学6.4 平面向量的应用教案配套ppt课件: 这是一份高中数学6.4 平面向量的应用教案配套ppt课件,共45页。PPT课件主要包含了素养目标•定方向,必备知识•探新知,正北方向,关键能力•攻重难,题型探究,易错警示,课堂检测•固双基等内容,欢迎下载使用。

    人教A版 (2019)必修 第二册6.4 平面向量的应用图片课件ppt: 这是一份人教A版 (2019)必修 第二册6.4 平面向量的应用图片课件ppt,共53页。PPT课件主要包含了素养目标•定方向,必备知识•探新知,关键能力•攻重难,题型探究,易错警示,利用正弦定理解三角形,课堂检测•固双基等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第二册6.4 平面向量的应用课文配套课件ppt: 这是一份高中数学人教A版 (2019)必修 第二册6.4 平面向量的应用课文配套课件ppt,共30页。PPT课件主要包含了预学案,共学案,答案D,答案C,答案B,答案A等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材适用2023_2024学年高中数学第6章平面向量及其应用6.4平面向量的应用6.4.3余弦定理正弦定理第1课时余弦定理课件新人教A版必修第二册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map