北师大版八年级上册3 勾股定理的应用测试题
展开1.3 勾股定理的应用 提升练习
一、选择题
1.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的点C测得CA=130 m,CB=120 m,则AB为( )
A. 30 m B. 40 m
C. 50 m D. 60 m
2. 一个圆柱形的油桶高120cm,底面直径为50cm,则桶内所能容下的最长的木棒长为( )
A. B. C. D.
3.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A'镶有一圈金属丝,已知此三棱镜的高为5 cm,底面边长为4 cm,则这圈金属丝的长度至少为( )
A.8 cm B.13 cm C.12 cm D.15 cm
4.如图所示,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光.请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )
A.4米 B.3米 C.5米 D.7米
5.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个小时后,甲、乙两渔船相距( )海里.
A.8 B.10 C.12 D.13
6.如图,有一个水池,水面是一边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池的一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是( )尺.
A.7.5 B.8 C. D.9
7.如图,长方形操场ABCD的长AD为80m,宽AB为60m,小明站在A处,足球落在C处,小明要想捡到足球,他最少应跑( ).
A.80m B.90m C.100m D.140m
8.如图,由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)的高度是( )
A.8m B.10m C.16m D.18m
9.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图),在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为8cm,则这圈金属丝的长度至少为( )
A.8cm B.10cm C.12cm D.3cm
10.如图是2022年8月在北京召开的国际数学大会的会标,它是由四个相同的直角三角形与中间一个小正方形拼成的一个大正方形,若大正方形的边长是13cm,每个直角三角形较短的一条直角边的长是5cm,则小正方形的边长为( )
A.4cm B.5cm C.6cm D.7cm
二、填空题
1.如图,小明从点出发向正北方向走米到达点,接着向正东方向走到离点米远的点,此时小明向正东方向走了 米
2.如图,某斜拉桥的主梁垂直于桥面于点,主梁上两根拉索、长分别为米、米,主梁的高度为米,则固定点、之间的距离为______ 米
3.如图,长方体的底面边长分别为 和 ,高为 .如果用一根细线从点 开始经过 个侧面缠绕一圈到达点 ,那么所用细线最短需要 ;如果从点 开始经过 个侧面缠绕 圈到达点 ,那么所用细线最短需要
4.如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A村、B村到河边的距离分别为2 km和7 km,且AB两村庄相距13 km,则铺设水管的最短长度是__________km.
5.如图,一根直立于水中的芦苇高出水面米,一阵风吹来,芦苇的顶端恰好到达水面的处,且点到的距离米,则芦苇的长度为 米.
6.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度BC=4m,BE=1m.则滑道AC的长度为 m.
三、解答题
1.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?
2.小明去钓鱼,鱼钩A在离水面BD约1.3米处,在距离鱼线1.2米处的D点的水下0.8米处的C点有一条鱼发现了鱼饵,于是以0.2 m/s的速度向鱼饵游来,那么这条鱼至少几秒后才能到达鱼饵处?
3.某船从港口A出发沿南偏东32°方向航行12海里到达B岛,然后沿某方向航行16海里到达C岛,最后沿某个方向航行了20海里回到港口A,则该船从B到C是沿哪个方向航行的?(即求C岛在B岛的哪个方位,距离B岛多远?),请说明理由.
4.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:
①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);
②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).
根据以上信息,求旗杆AB的高度.
5.甲同学在拼图探索活动中发现;用4个形状大小完全相同的直角三角形(直角边长分别为a,b,斜边长为c,可以拼成像图1那样的正方形,并由此得出了关于a2,b2,c2.的一个等式.
(1)请你写出这一结论: ,并给出验证过程;
(2)试用上述结论解决问题:如图2如图,在四边形ABCD中,∠B=∠D=90°,分别以四边向外作正方形甲、乙,丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,求“丁”的面积.
数学八年级上册第一章 勾股定理3 勾股定理的应用练习: 这是一份数学八年级上册第一章 勾股定理3 勾股定理的应用练习,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学八年级上册3 勾股定理的应用练习题: 这是一份数学八年级上册3 勾股定理的应用练习题,共6页。
初中数学北师大版八年级上册3 勾股定理的应用当堂检测题: 这是一份初中数学北师大版八年级上册3 勾股定理的应用当堂检测题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。