初中人教版6.3 实数教学设计
展开
这是一份初中人教版6.3 实数教学设计,共5页。教案主要包含了教学目标,教学重点和难点,教学方法,教学手段,教学过程,总结,作业,板书设计等内容,欢迎下载使用。
6.3《实数》教学设计 (人教课标七年级下册) 一、教学目标1.了解无理数和实数的意义,掌握实数的分类,能够判断一个数是有理数还是无理数;2.通过实数的分类,是学生进一步领会分类的思想;3.通过实数与数轴上的点一一对应关系,使学生了解数形结合思想,提高思维能力;4.数形结合体现了数学的统一性的美.二、教学重点和难点教学重点:使学生了解无理数和实数的意义及性质.教学难点:无理数意义的理解.三、教学方法讲练结合四、教学手段多媒体五、教学过程(一)复习提问什么叫有理数?有理数如何分类?由学生回答,教师帮助纠正:1.整数和分数统称为有理数.2.有理数的分类有两种方法:第一种:按定义分类: 第二种:按大小分类:(二)引入新课同学们,有理数由整数和分数组成,下面我们用小数的观点来看,整数可以看做是小数点后面是0的小数,如3可写做3.0、3.00;而分数,我们可以将分数化为有限小数或无限循环小数,由此我们可以看到有理数总是可以用有限小数或无限循环小数表示。如3=3.0,,,但是是不是所有的数都可以写成有限小数或无限循环小数形式呢?答案是否定的,我们来看这样一组数:我们会发现这些数的小数位数是无限的,而且是不循环的,这样的小数叫做无限不循环小数,显然它不属于有理数的范围.这就是我们今天要学习的一个新的概念:无理数.1.定义:无限不循环小数叫做无理数.请同学们判断以下说法是否正确?(1)无限小数都是无理数.(2)无理数都是无限小数.(3)带根号的数都是无理数.答:(1)错,无限不循环小数都是无理数.(2)错,无理数是无限不循环小数.现在我们不仅学过了有理数,而且又定义了无理数,显然我们所学的数的范围又扩大了,我们把有理数和无理数统称为实数,这是我们今天学习的又一新的概念.2.实数的定义:有理数和无理数统称为实数.3.实数的分类:对于实数,我们可按定义分类如下:由上述分类,我们发现有理数和无理数都有正负之分,所以对实数我们还可以按大小分类如下:对于这两种分类的方法,同学们应牢固地掌握.六、总结今天我们学习了实数这一新的内容,请同学们首先要清楚,实数我们是如何定义的,它与有理数是怎样的关系,再有就是对实数两种不同的分类要清楚.七、作业习题6.1第1,2题。八、板书设计 6.1实数1.无理数定义 2.实数定义 3.分类
相关教案
这是一份初中人教版6.1 平方根教案,共2页。教案主要包含了复习旧知,挑战新知,探究思考,内化新知,变式训练,巩固新知,归纳小结,强化新知等内容,欢迎下载使用。
这是一份人教版七年级下册第五章 相交线与平行线5.4 平移教案设计,共3页。教案主要包含了创设问题情境,探索过程,平移作图探讨,课堂练习,本课小结,作业布置等内容,欢迎下载使用。
这是一份人教版七年级下册9.2 一元一次不等式教学设计,共4页。教案主要包含了内容和内容解析,目标和目标的解析,教学问题诊断分析,教学过程设计等内容,欢迎下载使用。